Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,8 @@ import numpy as np
|
|
| 3 |
import tempfile
|
| 4 |
import librosa
|
| 5 |
import soundfile as sf
|
| 6 |
-
import noisereduce as nr
|
| 7 |
from scipy import signal
|
|
|
|
| 8 |
|
| 9 |
class AIHumanizer:
|
| 10 |
def __init__(self):
|
|
@@ -13,39 +13,51 @@ class AIHumanizer:
|
|
| 13 |
def humanize_audio(self, audio_path, intensity=0.7):
|
| 14 |
"""Remove AI artifacts and make audio sound human-made"""
|
| 15 |
try:
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# If stereo, process both channels
|
| 20 |
if len(y.shape) > 1:
|
|
|
|
| 21 |
processed_channels = []
|
| 22 |
-
for channel in y:
|
|
|
|
| 23 |
processed_channel = self.process_channel(channel, sr, intensity)
|
| 24 |
processed_channels.append(processed_channel)
|
| 25 |
-
y_processed = np.
|
| 26 |
else:
|
|
|
|
| 27 |
y_processed = self.process_channel(y, sr, intensity)
|
|
|
|
| 28 |
|
|
|
|
| 29 |
return y_processed, sr
|
| 30 |
|
| 31 |
except Exception as e:
|
|
|
|
| 32 |
raise Exception(f"Humanization failed: {str(e)}")
|
| 33 |
|
| 34 |
def process_channel(self, y, sr, intensity):
|
| 35 |
"""Process a single audio channel to remove AI artifacts"""
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
y_processed = self.reduce_ai_artifacts(y, sr, intensity)
|
| 38 |
|
| 39 |
-
# 2. Add
|
| 40 |
y_processed = self.add_timing_variations(y_processed, sr, intensity)
|
| 41 |
|
| 42 |
-
# 3. Add
|
| 43 |
y_processed = self.add_pitch_variations(y_processed, sr, intensity)
|
| 44 |
|
| 45 |
-
# 4. Add
|
| 46 |
y_processed = self.add_room_ambiance(y_processed, sr, intensity)
|
| 47 |
|
| 48 |
-
# 5. Add
|
| 49 |
y_processed = self.add_analog_warmth(y_processed, sr, intensity)
|
| 50 |
|
| 51 |
# 6. Reduce perfect quantization
|
|
@@ -55,116 +67,142 @@ class AIHumanizer:
|
|
| 55 |
|
| 56 |
def reduce_ai_artifacts(self, y, sr, intensity):
|
| 57 |
"""Reduce common AI audio artifacts"""
|
| 58 |
-
# Reduce
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
return
|
| 67 |
|
| 68 |
def add_timing_variations(self, y, sr, intensity):
|
| 69 |
-
"""Add subtle timing variations
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
return y
|
| 89 |
|
| 90 |
def add_pitch_variations(self, y, sr, intensity):
|
| 91 |
-
"""Add subtle pitch variations
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# Create subtle vibrato
|
| 96 |
-
vibrato_rate = 5.0 # Hz
|
| 97 |
-
vibrato_depth = 0.3 * intensity # Semitones
|
| 98 |
-
|
| 99 |
-
pitch_variation = np.sin(2 * np.pi * vibrato_rate * t) * vibrato_depth
|
| 100 |
-
|
| 101 |
-
# Apply pitch shifting using phase vocoder
|
| 102 |
-
y_pitched = self.pitch_shift_pv(y, sr, pitch_variation)
|
| 103 |
-
|
| 104 |
-
# Blend with original
|
| 105 |
-
blend_factor = 0.15 * intensity
|
| 106 |
-
return y * (1 - blend_factor) + y_pitched * blend_factor
|
| 107 |
-
|
| 108 |
-
def pitch_shift_pv(self, y, sr, pitch_variation):
|
| 109 |
-
"""Simple phase vocoder pitch shifting"""
|
| 110 |
-
# Simple implementation - in practice you'd use librosa's phase_vocoder
|
| 111 |
-
# For now, we'll use a simplified version
|
| 112 |
try:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
except:
|
| 119 |
return y
|
| 120 |
|
| 121 |
def add_room_ambiance(self, y, sr, intensity):
|
| 122 |
-
"""Add natural room reverb
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
impulse = np.zeros(impulse_length)
|
| 126 |
|
| 127 |
# Early reflections
|
| 128 |
-
early_reflections = int(0.
|
| 129 |
-
|
|
|
|
| 130 |
|
| 131 |
# Late reverb tail
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
#
|
| 136 |
-
|
|
|
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
def add_analog_warmth(self, y, sr, intensity):
|
| 143 |
-
"""Add analog-style warmth
|
| 144 |
# Soft clipping saturation
|
| 145 |
-
saturation_amount = 1.0 + 0.
|
| 146 |
y_saturated = np.tanh(y * saturation_amount) / saturation_amount
|
| 147 |
|
| 148 |
-
# Add subtle
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
def reduce_perfect_quantization(self, y, sr, intensity):
|
| 157 |
-
"""Reduce perfectly quantized timing"""
|
| 158 |
# Add subtle random amplitude variations
|
| 159 |
t = np.linspace(0, len(y)/sr, len(y))
|
| 160 |
|
| 161 |
-
# Low-frequency amplitude modulation
|
| 162 |
-
lfo_rate = 0.
|
| 163 |
-
lfo_depth = 0.
|
| 164 |
amplitude_variation = 1.0 + np.sin(2 * np.pi * lfo_rate * t) * lfo_depth
|
| 165 |
|
| 166 |
# Random micro-variations
|
| 167 |
-
random_variation = 1.0 + np.random.normal(0, 0.
|
| 168 |
|
| 169 |
# Combine variations
|
| 170 |
total_variation = amplitude_variation * random_variation
|
|
@@ -174,102 +212,107 @@ class AIHumanizer:
|
|
| 174 |
def humanize_song(input_mp3, intensity):
|
| 175 |
"""Main humanization function"""
|
| 176 |
if input_mp3 is None:
|
| 177 |
-
return None, "Please upload an
|
| 178 |
|
| 179 |
humanizer = AIHumanizer()
|
| 180 |
|
| 181 |
try:
|
|
|
|
|
|
|
| 182 |
# Process the entire song to remove AI artifacts
|
| 183 |
audio_data, sr = humanizer.humanize_audio(input_mp3, intensity)
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
sf.write(output_path, audio_data, sr)
|
|
|
|
| 188 |
|
| 189 |
return output_path, "β
Song humanized! AI artifacts removed and human feel added."
|
| 190 |
|
| 191 |
except Exception as e:
|
| 192 |
-
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
# Simple
|
| 195 |
with gr.Blocks(theme=gr.themes.Soft(), title="AI Song Humanizer") as demo:
|
| 196 |
gr.Markdown("""
|
| 197 |
# π΅ AI Song Humanizer
|
| 198 |
-
**Remove AI Detection
|
| 199 |
|
| 200 |
-
*Upload AI-generated
|
| 201 |
""")
|
| 202 |
|
| 203 |
with gr.Row():
|
| 204 |
with gr.Column(scale=1):
|
| 205 |
-
gr.Markdown("### 1. Upload AI
|
| 206 |
input_audio = gr.Audio(
|
| 207 |
-
sources=["upload"],
|
| 208 |
type="filepath",
|
| 209 |
-
label="Upload your complete AI song
|
|
|
|
| 210 |
)
|
| 211 |
|
| 212 |
-
gr.Markdown("### 2.
|
| 213 |
intensity = gr.Slider(
|
| 214 |
0.1, 1.0, value=0.7,
|
| 215 |
-
label="
|
| 216 |
-
info="
|
| 217 |
)
|
| 218 |
|
| 219 |
process_btn = gr.Button(
|
| 220 |
-
"
|
| 221 |
variant="primary",
|
| 222 |
size="lg"
|
| 223 |
)
|
| 224 |
|
| 225 |
with gr.Column(scale=1):
|
| 226 |
-
gr.Markdown("### 3. Download
|
| 227 |
output_audio = gr.Audio(
|
| 228 |
-
label="Human-Sounding Song",
|
| 229 |
type="filepath",
|
| 230 |
interactive=False
|
| 231 |
)
|
| 232 |
|
| 233 |
status = gr.Textbox(
|
| 234 |
-
label="
|
| 235 |
-
interactive=False
|
|
|
|
| 236 |
)
|
| 237 |
|
| 238 |
-
with gr.Accordion("
|
| 239 |
gr.Markdown("""
|
| 240 |
-
**This tool processes your EXISTING
|
| 241 |
|
| 242 |
-
|
| 243 |
-
- Reduces metallic/robotic frequencies
|
| 244 |
-
- Removes perfect quantization
|
| 245 |
-
- Eliminates sterile digital sound
|
| 246 |
-
|
| 247 |
-
π€ **Add Human Performance Elements:**
|
| 248 |
-
- Subtle timing variations (like human musicians)
|
| 249 |
-
- Natural pitch fluctuations (vibrato, human imperfection)
|
| 250 |
-
- Dynamic amplitude changes
|
| 251 |
-
|
| 252 |
-
ποΈ **Add Analog Character:**
|
| 253 |
-
- Natural room ambiance and reverb
|
| 254 |
-
- Analog-style warmth and saturation
|
| 255 |
-
- Tape-like characteristics
|
| 256 |
-
|
| 257 |
-
**You keep:**
|
| 258 |
-
- Your original melody
|
| 259 |
-
- Your original arrangement
|
| 260 |
-
- Your original vocals/instruments
|
| 261 |
- Your complete song structure
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
""")
|
| 271 |
|
| 272 |
-
# Processing
|
| 273 |
process_btn.click(
|
| 274 |
fn=humanize_song,
|
| 275 |
inputs=[input_audio, intensity],
|
|
@@ -277,4 +320,4 @@ with gr.Blocks(theme=gr.themes.Soft(), title="AI Song Humanizer") as demo:
|
|
| 277 |
)
|
| 278 |
|
| 279 |
if __name__ == "__main__":
|
| 280 |
-
demo.launch()
|
|
|
|
| 3 |
import tempfile
|
| 4 |
import librosa
|
| 5 |
import soundfile as sf
|
|
|
|
| 6 |
from scipy import signal
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
class AIHumanizer:
|
| 10 |
def __init__(self):
|
|
|
|
| 13 |
def humanize_audio(self, audio_path, intensity=0.7):
|
| 14 |
"""Remove AI artifacts and make audio sound human-made"""
|
| 15 |
try:
|
| 16 |
+
print(f"Loading audio from: {audio_path}")
|
| 17 |
+
|
| 18 |
+
# Load the full song - handle both mono and stereo
|
| 19 |
+
y, sr = librosa.load(audio_path, sr=None, mono=False)
|
| 20 |
+
|
| 21 |
+
print(f"Audio loaded: shape={y.shape}, sr={sr}, duration={len(y)/sr:.2f}s")
|
| 22 |
|
| 23 |
# If stereo, process both channels
|
| 24 |
if len(y.shape) > 1:
|
| 25 |
+
print("Processing stereo audio...")
|
| 26 |
processed_channels = []
|
| 27 |
+
for i, channel in enumerate(y):
|
| 28 |
+
print(f"Processing channel {i+1}...")
|
| 29 |
processed_channel = self.process_channel(channel, sr, intensity)
|
| 30 |
processed_channels.append(processed_channel)
|
| 31 |
+
y_processed = np.array(processed_channels)
|
| 32 |
else:
|
| 33 |
+
print("Processing mono audio...")
|
| 34 |
y_processed = self.process_channel(y, sr, intensity)
|
| 35 |
+
y_processed = np.array([y_processed]) # Make it 2D for consistency
|
| 36 |
|
| 37 |
+
print("Audio processing completed successfully")
|
| 38 |
return y_processed, sr
|
| 39 |
|
| 40 |
except Exception as e:
|
| 41 |
+
print(f"Error in humanize_audio: {str(e)}")
|
| 42 |
raise Exception(f"Humanization failed: {str(e)}")
|
| 43 |
|
| 44 |
def process_channel(self, y, sr, intensity):
|
| 45 |
"""Process a single audio channel to remove AI artifacts"""
|
| 46 |
+
print(f"Processing channel: {len(y)} samples, intensity={intensity}")
|
| 47 |
+
|
| 48 |
+
# 1. Reduce robotic frequencies
|
| 49 |
y_processed = self.reduce_ai_artifacts(y, sr, intensity)
|
| 50 |
|
| 51 |
+
# 2. Add timing variations
|
| 52 |
y_processed = self.add_timing_variations(y_processed, sr, intensity)
|
| 53 |
|
| 54 |
+
# 3. Add pitch variations
|
| 55 |
y_processed = self.add_pitch_variations(y_processed, sr, intensity)
|
| 56 |
|
| 57 |
+
# 4. Add room ambiance
|
| 58 |
y_processed = self.add_room_ambiance(y_processed, sr, intensity)
|
| 59 |
|
| 60 |
+
# 5. Add analog warmth
|
| 61 |
y_processed = self.add_analog_warmth(y_processed, sr, intensity)
|
| 62 |
|
| 63 |
# 6. Reduce perfect quantization
|
|
|
|
| 67 |
|
| 68 |
def reduce_ai_artifacts(self, y, sr, intensity):
|
| 69 |
"""Reduce common AI audio artifacts"""
|
| 70 |
+
# Reduce harsh frequencies in the 2kHz-6kHz range (common AI artifacts)
|
| 71 |
+
if sr > 4000: # Only if sample rate is high enough
|
| 72 |
+
sos = signal.butter(4, [1900, 6100], 'bandstop', fs=sr, output='sos')
|
| 73 |
+
y_filtered = signal.sosfilt(sos, y)
|
| 74 |
+
|
| 75 |
+
# Blend with original based on intensity
|
| 76 |
+
y_processed = y * (1 - intensity*0.3) + y_filtered * (intensity*0.3)
|
| 77 |
+
return y_processed
|
| 78 |
+
return y
|
| 79 |
|
| 80 |
def add_timing_variations(self, y, sr, intensity):
|
| 81 |
+
"""Add subtle timing variations"""
|
| 82 |
+
if intensity < 0.1:
|
| 83 |
+
return y
|
| 84 |
+
|
| 85 |
+
# Create small random speed variations
|
| 86 |
+
segment_size = int(sr * 2.0) # 2-second segments
|
| 87 |
+
segments = []
|
| 88 |
+
|
| 89 |
+
for i in range(0, len(y), segment_size):
|
| 90 |
+
segment = y[i:i+segment_size]
|
| 91 |
+
if len(segment) > 100: # Only process if segment is long enough
|
| 92 |
+
# Small speed variation
|
| 93 |
+
speed_var = 1.0 + np.random.normal(0, 0.004 * intensity)
|
| 94 |
+
new_length = int(len(segment) / speed_var)
|
| 95 |
+
|
| 96 |
+
if new_length > 0 and len(segment) > 0:
|
| 97 |
+
# Simple resampling for timing variation
|
| 98 |
+
original_indices = np.arange(len(segment))
|
| 99 |
+
new_indices = np.linspace(0, len(segment)-1, new_length)
|
| 100 |
+
segment_varied = np.interp(new_indices, original_indices, segment)
|
| 101 |
+
|
| 102 |
+
# Resample back to original length if needed
|
| 103 |
+
if len(segment_varied) != len(segment):
|
| 104 |
+
if len(segment_varied) > len(segment):
|
| 105 |
+
segment_varied = segment_varied[:len(segment)]
|
| 106 |
+
else:
|
| 107 |
+
segment_varied = np.pad(segment_varied, (0, len(segment) - len(segment_varied)))
|
| 108 |
+
|
| 109 |
+
segments.append(segment_varied)
|
| 110 |
+
else:
|
| 111 |
+
segments.append(segment)
|
| 112 |
+
else:
|
| 113 |
+
segments.append(segment)
|
| 114 |
|
| 115 |
+
if segments:
|
| 116 |
+
return np.concatenate(segments)
|
| 117 |
+
return y
|
| 118 |
|
| 119 |
def add_pitch_variations(self, y, sr, intensity):
|
| 120 |
+
"""Add subtle pitch variations"""
|
| 121 |
+
if intensity < 0.2:
|
| 122 |
+
return y
|
| 123 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
try:
|
| 125 |
+
# Use librosa for pitch shifting (more reliable)
|
| 126 |
+
n_steps = np.random.normal(0, 0.1 * intensity)
|
| 127 |
+
y_shifted = librosa.effects.pitch_shift(y, sr=sr, n_steps=n_steps, bins_per_octave=24)
|
| 128 |
+
|
| 129 |
+
# Blend with original
|
| 130 |
+
blend_factor = 0.15 * intensity
|
| 131 |
+
return y * (1 - blend_factor) + y_shifted * blend_factor
|
| 132 |
except:
|
| 133 |
return y
|
| 134 |
|
| 135 |
def add_room_ambiance(self, y, sr, intensity):
|
| 136 |
+
"""Add natural room reverb"""
|
| 137 |
+
if intensity < 0.1:
|
| 138 |
+
return y
|
| 139 |
+
|
| 140 |
+
# Simple impulse response for natural room
|
| 141 |
+
impulse_length = int(0.2 * sr) # 200ms reverb
|
| 142 |
+
if impulse_length < 10:
|
| 143 |
+
return y
|
| 144 |
+
|
| 145 |
impulse = np.zeros(impulse_length)
|
| 146 |
|
| 147 |
# Early reflections
|
| 148 |
+
early_reflections = int(0.01 * sr) # 10ms
|
| 149 |
+
if early_reflections < len(impulse):
|
| 150 |
+
impulse[early_reflections] = 0.6
|
| 151 |
|
| 152 |
# Late reverb tail
|
| 153 |
+
reverb_start = min(early_reflections + 1, len(impulse))
|
| 154 |
+
if reverb_start < len(impulse):
|
| 155 |
+
tail_length = len(impulse) - reverb_start
|
| 156 |
+
decay = np.exp(-np.linspace(0, 8, tail_length))
|
| 157 |
+
impulse[reverb_start:] = decay * 0.3
|
| 158 |
|
| 159 |
+
# Normalize impulse
|
| 160 |
+
if np.max(np.abs(impulse)) > 0:
|
| 161 |
+
impulse = impulse / np.max(np.abs(impulse))
|
| 162 |
|
| 163 |
+
# Apply convolution
|
| 164 |
+
try:
|
| 165 |
+
y_reverb = signal.convolve(y, impulse, mode='same')
|
| 166 |
+
# Normalize to prevent clipping
|
| 167 |
+
if np.max(np.abs(y_reverb)) > 0:
|
| 168 |
+
y_reverb = y_reverb / np.max(np.abs(y_reverb)) * np.max(np.abs(y))
|
| 169 |
+
|
| 170 |
+
# Blend with original
|
| 171 |
+
blend_factor = 0.08 * intensity
|
| 172 |
+
return y * (1 - blend_factor) + y_reverb * blend_factor
|
| 173 |
+
except:
|
| 174 |
+
return y
|
| 175 |
|
| 176 |
def add_analog_warmth(self, y, sr, intensity):
|
| 177 |
+
"""Add analog-style warmth"""
|
| 178 |
# Soft clipping saturation
|
| 179 |
+
saturation_amount = 1.0 + 0.3 * intensity
|
| 180 |
y_saturated = np.tanh(y * saturation_amount) / saturation_amount
|
| 181 |
|
| 182 |
+
# Add subtle warmth with EQ
|
| 183 |
+
try:
|
| 184 |
+
# Gentle low-end boost
|
| 185 |
+
sos = signal.butter(2, 80, 'highpass', fs=sr, output='sos')
|
| 186 |
+
y_warm = signal.sosfilt(sos, y_saturated)
|
| 187 |
+
|
| 188 |
+
# Blend
|
| 189 |
+
blend_factor = 0.1 * intensity
|
| 190 |
+
return y * (1 - blend_factor) + y_warm * blend_factor
|
| 191 |
+
except:
|
| 192 |
+
return y_saturated
|
| 193 |
|
| 194 |
def reduce_perfect_quantization(self, y, sr, intensity):
|
| 195 |
+
"""Reduce perfectly quantized timing with amplitude variations"""
|
| 196 |
# Add subtle random amplitude variations
|
| 197 |
t = np.linspace(0, len(y)/sr, len(y))
|
| 198 |
|
| 199 |
+
# Low-frequency amplitude modulation
|
| 200 |
+
lfo_rate = 0.3 + 0.4 * intensity # Hz
|
| 201 |
+
lfo_depth = 0.03 * intensity
|
| 202 |
amplitude_variation = 1.0 + np.sin(2 * np.pi * lfo_rate * t) * lfo_depth
|
| 203 |
|
| 204 |
# Random micro-variations
|
| 205 |
+
random_variation = 1.0 + np.random.normal(0, 0.01 * intensity, len(y))
|
| 206 |
|
| 207 |
# Combine variations
|
| 208 |
total_variation = amplitude_variation * random_variation
|
|
|
|
| 212 |
def humanize_song(input_mp3, intensity):
|
| 213 |
"""Main humanization function"""
|
| 214 |
if input_mp3 is None:
|
| 215 |
+
return None, "Please upload an audio file"
|
| 216 |
|
| 217 |
humanizer = AIHumanizer()
|
| 218 |
|
| 219 |
try:
|
| 220 |
+
print("Starting humanization process...")
|
| 221 |
+
|
| 222 |
# Process the entire song to remove AI artifacts
|
| 223 |
audio_data, sr = humanizer.humanize_audio(input_mp3, intensity)
|
| 224 |
|
| 225 |
+
print(f"Humanization complete. Saving audio: shape={audio_data.shape}, sr={sr}")
|
| 226 |
+
|
| 227 |
+
# Save as WAV (more reliable than MP3)
|
| 228 |
+
output_path = tempfile.mktemp(suffix='_humanized.wav')
|
| 229 |
+
|
| 230 |
+
# Ensure data is in correct format
|
| 231 |
+
if len(audio_data.shape) > 1:
|
| 232 |
+
audio_data = audio_data.T # Transpose for soundfile
|
| 233 |
+
|
| 234 |
sf.write(output_path, audio_data, sr)
|
| 235 |
+
print(f"Audio saved successfully to: {output_path}")
|
| 236 |
|
| 237 |
return output_path, "β
Song humanized! AI artifacts removed and human feel added."
|
| 238 |
|
| 239 |
except Exception as e:
|
| 240 |
+
error_msg = f"β Error: {str(e)}"
|
| 241 |
+
print(error_msg)
|
| 242 |
+
return None, error_msg
|
| 243 |
|
| 244 |
+
# Simple and reliable interface
|
| 245 |
with gr.Blocks(theme=gr.themes.Soft(), title="AI Song Humanizer") as demo:
|
| 246 |
gr.Markdown("""
|
| 247 |
# π΅ AI Song Humanizer
|
| 248 |
+
**Remove AI Detection - Make Your Songs Sound Human-Made**
|
| 249 |
|
| 250 |
+
*Upload your AI-generated song β Remove robotic artifacts β Download natural-sounding version*
|
| 251 |
""")
|
| 252 |
|
| 253 |
with gr.Row():
|
| 254 |
with gr.Column(scale=1):
|
| 255 |
+
gr.Markdown("### 1. Upload AI Song")
|
| 256 |
input_audio = gr.Audio(
|
| 257 |
+
sources=["upload", "microphone"],
|
| 258 |
type="filepath",
|
| 259 |
+
label="Upload your complete AI-generated song",
|
| 260 |
+
editable=True
|
| 261 |
)
|
| 262 |
|
| 263 |
+
gr.Markdown("### 2. Humanization Strength")
|
| 264 |
intensity = gr.Slider(
|
| 265 |
0.1, 1.0, value=0.7,
|
| 266 |
+
label="How much human feel to add",
|
| 267 |
+
info="Lower = subtle, Higher = more natural/organic"
|
| 268 |
)
|
| 269 |
|
| 270 |
process_btn = gr.Button(
|
| 271 |
+
"πΉ Humanize This Song",
|
| 272 |
variant="primary",
|
| 273 |
size="lg"
|
| 274 |
)
|
| 275 |
|
| 276 |
with gr.Column(scale=1):
|
| 277 |
+
gr.Markdown("### 3. Download Result")
|
| 278 |
output_audio = gr.Audio(
|
| 279 |
+
label="Your Human-Sounding Song",
|
| 280 |
type="filepath",
|
| 281 |
interactive=False
|
| 282 |
)
|
| 283 |
|
| 284 |
status = gr.Textbox(
|
| 285 |
+
label="Status",
|
| 286 |
+
interactive=False,
|
| 287 |
+
max_lines=3
|
| 288 |
)
|
| 289 |
|
| 290 |
+
with gr.Accordion("π‘ How It Works", open=True):
|
| 291 |
gr.Markdown("""
|
| 292 |
+
**This tool processes your EXISTING song to remove AI characteristics:**
|
| 293 |
|
| 294 |
+
β
**Keeps Everything Original:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
- Your complete song structure
|
| 296 |
+
- All vocals and instruments
|
| 297 |
+
- Melody and arrangement
|
| 298 |
+
- Everything you created
|
| 299 |
+
|
| 300 |
+
ποΈ **Removes AI Artifacts:**
|
| 301 |
+
- Robotic/metallic frequencies
|
| 302 |
+
- Perfect digital quantization
|
| 303 |
+
- Sterile, artificial sound
|
| 304 |
+
- AI-generated frequency patterns
|
| 305 |
+
|
| 306 |
+
π΅ **Adds Human Elements:**
|
| 307 |
+
- Natural timing variations
|
| 308 |
+
- Subtle pitch fluctuations
|
| 309 |
+
- Room ambiance and warmth
|
| 310 |
+
- Analog-style character
|
| 311 |
+
|
| 312 |
+
**Result:** Your same song, but it sounds like humans performed it!
|
| 313 |
""")
|
| 314 |
|
| 315 |
+
# Processing function
|
| 316 |
process_btn.click(
|
| 317 |
fn=humanize_song,
|
| 318 |
inputs=[input_audio, intensity],
|
|
|
|
| 320 |
)
|
| 321 |
|
| 322 |
if __name__ == "__main__":
|
| 323 |
+
demo.launch(debug=True)
|