Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,14 @@ import pretty_midi
|
|
| 3 |
import numpy as np
|
| 4 |
import tempfile
|
| 5 |
import os
|
| 6 |
-
import scipy
|
| 7 |
-
from scipy import signal
|
| 8 |
import librosa
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
from pathlib import Path
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
class
|
| 14 |
def __init__(self):
|
| 15 |
self.groove_profiles = {
|
| 16 |
"drums": {"timing_var": 0.02, "velocity_var": 15, "swing_factor": 0.1},
|
|
@@ -19,169 +19,267 @@ class HumanizeBot:
|
|
| 19 |
"chords": {"timing_var": 0.008, "velocity_var": 8, "swing_factor": 0.03},
|
| 20 |
"other": {"timing_var": 0.01, "velocity_var": 10, "swing_factor": 0.05}
|
| 21 |
}
|
| 22 |
-
|
| 23 |
-
def
|
| 24 |
-
"""
|
| 25 |
-
if instrument.is_drum:
|
| 26 |
-
return "drums"
|
| 27 |
-
elif 32 <= instrument.program <= 39: # Bass
|
| 28 |
-
return "bass"
|
| 29 |
-
elif 0 <= instrument.program <= 7: # Piano
|
| 30 |
-
return "chords"
|
| 31 |
-
elif 40 <= instrument.program <= 55: # Strings, orchestra
|
| 32 |
-
return "chords"
|
| 33 |
-
elif 80 <= instrument.program <= 104: # Synth leads, pads
|
| 34 |
-
return "melody"
|
| 35 |
-
else:
|
| 36 |
-
return "melody"
|
| 37 |
-
|
| 38 |
-
def apply_swing(self, notes, swing_factor, tempo):
|
| 39 |
-
"""Apply swing/groove to notes"""
|
| 40 |
-
swung_notes = []
|
| 41 |
-
for note in notes:
|
| 42 |
-
# Simple swing: push even 8th notes slightly later
|
| 43 |
-
beat_position = (note.start * tempo / 60) % 1
|
| 44 |
-
if 0.25 < beat_position < 0.75: # Off-beat positions
|
| 45 |
-
note.start += 0.01 * swing_factor
|
| 46 |
-
note.end += 0.01 * swing_factor
|
| 47 |
-
swung_notes.append(note)
|
| 48 |
-
return swung_notes
|
| 49 |
-
|
| 50 |
-
def humanize_midi(self, midi_file, intensity=0.7, style="organic", add_swing=True):
|
| 51 |
-
"""Main humanization function"""
|
| 52 |
try:
|
| 53 |
-
# Load
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# Humanize note duration (except for drums)
|
| 77 |
-
if not instrument.is_drum:
|
| 78 |
-
duration_shift = np.random.normal(0, profile["timing_var"] * 0.5 * intensity)
|
| 79 |
-
note.end = max(note.start + 0.05, note.end + duration_shift)
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
|
| 95 |
-
def
|
| 96 |
-
"""
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
else:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
def
|
| 121 |
if not files:
|
| 122 |
-
return None, None, "Please upload
|
| 123 |
|
| 124 |
-
|
| 125 |
processed_files = []
|
| 126 |
-
audio_previews = []
|
| 127 |
|
| 128 |
for file in files:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
#
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
if processed_files:
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
else:
|
| 141 |
return None, None, "❌ No files were processed successfully."
|
| 142 |
|
| 143 |
-
# Create
|
| 144 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="HumanizeBot") as demo:
|
| 145 |
gr.Markdown("""
|
| 146 |
-
# 🎵 HumanizeBot
|
| 147 |
-
**
|
| 148 |
|
| 149 |
-
Upload
|
| 150 |
""")
|
| 151 |
|
| 152 |
with gr.Row():
|
| 153 |
with gr.Column(scale=1):
|
| 154 |
-
gr.Markdown("### 📁 Upload
|
| 155 |
|
| 156 |
file_input = gr.File(
|
| 157 |
file_count="multiple",
|
| 158 |
-
file_types=[".
|
| 159 |
-
label="Upload
|
| 160 |
type="filepath"
|
| 161 |
)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
intensity = gr.Slider(
|
| 164 |
0.1, 1.0,
|
| 165 |
value=0.7,
|
| 166 |
-
label="🎚️ Humanization Intensity"
|
| 167 |
-
info="Low = subtle, High = very human"
|
| 168 |
)
|
| 169 |
|
| 170 |
style = gr.Radio(
|
| 171 |
["organic", "groovy", "gentle"],
|
| 172 |
value="organic",
|
| 173 |
-
label="🎸 Humanization Style"
|
| 174 |
-
info="Organic = natural, Groovy = rhythmic, Gentle = subtle"
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
add_swing = gr.Checkbox(
|
| 178 |
-
value=True,
|
| 179 |
-
label="🔄 Add Swing/Groove",
|
| 180 |
-
info="Add rhythmic push and pull"
|
| 181 |
)
|
| 182 |
|
| 183 |
process_btn = gr.Button(
|
| 184 |
-
"✨
|
| 185 |
variant="primary",
|
| 186 |
size="lg"
|
| 187 |
)
|
|
@@ -195,44 +293,40 @@ with gr.Blocks(theme=gr.themes.Soft(), title="HumanizeBot") as demo:
|
|
| 195 |
)
|
| 196 |
|
| 197 |
audio_output = gr.Audio(
|
| 198 |
-
label="Audio Preview
|
| 199 |
interactive=False
|
| 200 |
)
|
| 201 |
|
| 202 |
status = gr.Textbox(
|
| 203 |
label="Status",
|
| 204 |
interactive=False,
|
| 205 |
-
max_lines=
|
| 206 |
)
|
| 207 |
|
| 208 |
-
|
| 209 |
-
with gr.Accordion("🎯 Examples & Tips", open=False):
|
| 210 |
gr.Markdown("""
|
| 211 |
-
**
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
-
|
| 219 |
-
-
|
| 220 |
-
-
|
| 221 |
-
|
| 222 |
-
**
|
|
|
|
|
|
|
|
|
|
| 223 |
""")
|
| 224 |
|
| 225 |
-
# Connect the processing function
|
| 226 |
process_btn.click(
|
| 227 |
-
fn=
|
| 228 |
-
inputs=[file_input, intensity, style,
|
| 229 |
outputs=[file_output, audio_output, status]
|
| 230 |
)
|
| 231 |
-
|
| 232 |
-
gr.Markdown("""
|
| 233 |
-
---
|
| 234 |
-
*Built with ❤️ using Gradio and PrettyMIDI. Works best with MIDI files from AI music generators.*
|
| 235 |
-
""")
|
| 236 |
|
| 237 |
if __name__ == "__main__":
|
| 238 |
demo.launch(debug=True)
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import tempfile
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
import librosa
|
| 7 |
+
import torch
|
| 8 |
+
import torchaudio
|
| 9 |
from pathlib import Path
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
import io
|
| 12 |
|
| 13 |
+
class MP3ToHumanized:
|
| 14 |
def __init__(self):
|
| 15 |
self.groove_profiles = {
|
| 16 |
"drums": {"timing_var": 0.02, "velocity_var": 15, "swing_factor": 0.1},
|
|
|
|
| 19 |
"chords": {"timing_var": 0.008, "velocity_var": 8, "swing_factor": 0.03},
|
| 20 |
"other": {"timing_var": 0.01, "velocity_var": 10, "swing_factor": 0.05}
|
| 21 |
}
|
| 22 |
+
|
| 23 |
+
def audio_to_midi(self, audio_path, conversion_method="basic"):
|
| 24 |
+
"""Convert audio file to MIDI using different methods"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
+
# Load audio file
|
| 27 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
| 28 |
+
|
| 29 |
+
if conversion_method == "basic":
|
| 30 |
+
return self.basic_audio_to_midi(y, sr)
|
| 31 |
+
elif conversion_method == "melody":
|
| 32 |
+
return self.melody_extraction_to_midi(y, sr)
|
| 33 |
+
else:
|
| 34 |
+
return self.rhythm_based_midi(y, sr)
|
| 35 |
|
| 36 |
+
except Exception as e:
|
| 37 |
+
raise Exception(f"Audio to MIDI conversion failed: {str(e)}")
|
| 38 |
+
|
| 39 |
+
def basic_audio_to_midi(self, y, sr):
|
| 40 |
+
"""Basic onset detection and pitch estimation"""
|
| 41 |
+
# Create a pretty_midi object
|
| 42 |
+
midi = pretty_midi.PrettyMIDI()
|
| 43 |
+
|
| 44 |
+
# Create instrument
|
| 45 |
+
piano_program = pretty_midi.instrument_name_to_program('Acoustic Grand Piano')
|
| 46 |
+
instrument = pretty_midi.Instrument(program=piano_program)
|
| 47 |
+
|
| 48 |
+
# Detect onsets (when notes start)
|
| 49 |
+
onset_frames = librosa.onset.onset_detect(y=y, sr=sr, hop_length=512, backtrack=True)
|
| 50 |
+
onset_times = librosa.frames_to_time(onset_frames, sr=sr, hop_length=512)
|
| 51 |
+
|
| 52 |
+
# Estimate pitch for each onset
|
| 53 |
+
for onset_time in onset_times:
|
| 54 |
+
# Extract a segment around the onset
|
| 55 |
+
start_sample = int(onset_time * sr)
|
| 56 |
+
end_sample = start_sample + int(0.5 * sr) # 500ms segment
|
| 57 |
+
|
| 58 |
+
if end_sample < len(y):
|
| 59 |
+
segment = y[start_sample:end_sample]
|
| 60 |
|
| 61 |
+
# Estimate fundamental frequency
|
| 62 |
+
f0 = self.estimate_pitch(segment, sr)
|
| 63 |
+
|
| 64 |
+
if f0 > 0:
|
| 65 |
+
# Convert frequency to MIDI note number
|
| 66 |
+
midi_note = int(69 + 12 * np.log2(f0 / 440.0))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
# Only add if it's a valid MIDI note
|
| 69 |
+
if 0 <= midi_note <= 127:
|
| 70 |
+
# Create note
|
| 71 |
+
note = pretty_midi.Note(
|
| 72 |
+
velocity=np.random.randint(60, 100),
|
| 73 |
+
pitch=midi_note,
|
| 74 |
+
start=onset_time,
|
| 75 |
+
end=onset_time + 0.5 # 500ms duration
|
| 76 |
+
)
|
| 77 |
+
instrument.notes.append(note)
|
| 78 |
+
|
| 79 |
+
midi.instruments.append(instrument)
|
| 80 |
+
return midi
|
| 81 |
|
| 82 |
+
def melody_extraction_to_midi(self, y, sr):
|
| 83 |
+
"""Extract melody and convert to MIDI"""
|
| 84 |
+
midi = pretty_midi.PrettyMIDI()
|
| 85 |
+
instrument = pretty_midi.Instrument(program=0) # Piano
|
| 86 |
+
|
| 87 |
+
# Use librosa's melody extraction
|
| 88 |
+
f0, voiced_flag, voiced_probs = librosa.pyin(
|
| 89 |
+
y,
|
| 90 |
+
fmin=librosa.note_to_hz('C2'),
|
| 91 |
+
fmax=librosa.note_to_hz('C7'),
|
| 92 |
+
sr=sr
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
times = librosa.times_like(f0, sr=sr, hop_length=512)
|
| 96 |
+
|
| 97 |
+
current_note = None
|
| 98 |
+
note_start = 0
|
| 99 |
+
|
| 100 |
+
for time, freq, voiced in zip(times, f0, voiced_flag):
|
| 101 |
+
if voiced and not np.isnan(freq):
|
| 102 |
+
midi_note = int(69 + 12 * np.log2(freq / 440.0))
|
| 103 |
+
if 0 <= midi_note <= 127:
|
| 104 |
+
if current_note != midi_note:
|
| 105 |
+
if current_note is not None:
|
| 106 |
+
# End previous note
|
| 107 |
+
note = pretty_midi.Note(
|
| 108 |
+
velocity=80,
|
| 109 |
+
pitch=current_note,
|
| 110 |
+
start=note_start,
|
| 111 |
+
end=time
|
| 112 |
+
)
|
| 113 |
+
instrument.notes.append(note)
|
| 114 |
+
|
| 115 |
+
# Start new note
|
| 116 |
+
current_note = midi_note
|
| 117 |
+
note_start = time
|
| 118 |
else:
|
| 119 |
+
if current_note is not None:
|
| 120 |
+
# End current note
|
| 121 |
+
note = pretty_midi.Note(
|
| 122 |
+
velocity=80,
|
| 123 |
+
pitch=current_note,
|
| 124 |
+
start=note_start,
|
| 125 |
+
end=time
|
| 126 |
+
)
|
| 127 |
+
instrument.notes.append(note)
|
| 128 |
+
current_note = None
|
| 129 |
+
|
| 130 |
+
midi.instruments.append(instrument)
|
| 131 |
+
return midi
|
| 132 |
+
|
| 133 |
+
def rhythm_based_midi(self, y, sr):
|
| 134 |
+
"""Create rhythm-based MIDI from percussive elements"""
|
| 135 |
+
midi = pretty_midi.PrettyMIDI()
|
| 136 |
+
|
| 137 |
+
# Drum instrument
|
| 138 |
+
drum_instrument = pretty_midi.Instrument(program=0, is_drum=True)
|
| 139 |
+
|
| 140 |
+
# Detect strong beats and onsets
|
| 141 |
+
tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
|
| 142 |
+
beat_times = librosa.frames_to_time(beats, sr=sr)
|
| 143 |
+
|
| 144 |
+
# Add drum hits on beats
|
| 145 |
+
for beat_time in beat_times:
|
| 146 |
+
# Kick drum on strong beats
|
| 147 |
+
note = pretty_midi.Note(
|
| 148 |
+
velocity=100,
|
| 149 |
+
pitch=36, # Kick drum
|
| 150 |
+
start=beat_time,
|
| 151 |
+
end=beat_time + 0.1
|
| 152 |
+
)
|
| 153 |
+
drum_instrument.notes.append(note)
|
| 154 |
+
|
| 155 |
+
midi.instruments.append(drum_instrument)
|
| 156 |
+
return midi
|
| 157 |
+
|
| 158 |
+
def estimate_pitch(self, segment, sr):
|
| 159 |
+
"""Estimate fundamental frequency from audio segment"""
|
| 160 |
+
try:
|
| 161 |
+
# Use autocorrelation for pitch detection
|
| 162 |
+
corr = np.correlate(segment, segment, mode='full')
|
| 163 |
+
corr = corr[len(corr)//2:]
|
| 164 |
+
|
| 165 |
+
# Find the first peak after zero lag (fundamental frequency)
|
| 166 |
+
d = np.diff(corr)
|
| 167 |
+
start = np.where(d > 0)[0]
|
| 168 |
+
if len(start) > 0:
|
| 169 |
+
start = start[0]
|
| 170 |
+
peak = np.argmax(corr[start:]) + start
|
| 171 |
+
freq = sr / peak if peak > 0 else 0
|
| 172 |
+
return freq
|
| 173 |
+
except:
|
| 174 |
+
pass
|
| 175 |
+
return 0
|
| 176 |
+
|
| 177 |
+
def humanize_midi(self, midi_data, intensity=0.7, style="organic"):
|
| 178 |
+
"""Humanize the MIDI data"""
|
| 179 |
+
tempo = midi_data.estimate_tempo() if len(midi_data.instruments) > 0 else 120
|
| 180 |
+
|
| 181 |
+
for instrument in midi_data.instruments:
|
| 182 |
+
inst_type = "drums" if instrument.is_drum else "melody"
|
| 183 |
+
profile = self.groove_profiles[inst_type]
|
| 184 |
+
|
| 185 |
+
for note in instrument.notes:
|
| 186 |
+
# Humanize timing
|
| 187 |
+
timing_shift = np.random.normal(0, profile["timing_var"] * intensity)
|
| 188 |
+
note.start = max(0, note.start + timing_shift)
|
| 189 |
+
|
| 190 |
+
# Humanize duration (except drums)
|
| 191 |
+
if not instrument.is_drum:
|
| 192 |
+
duration_shift = np.random.normal(0, profile["timing_var"] * 0.3 * intensity)
|
| 193 |
+
note.end = max(note.start + 0.1, note.end + duration_shift)
|
| 194 |
+
|
| 195 |
+
# Humanize velocity
|
| 196 |
+
vel_shift = np.random.randint(-profile["velocity_var"], profile["velocity_var"])
|
| 197 |
+
new_velocity = note.velocity + int(vel_shift * intensity)
|
| 198 |
+
note.velocity = max(20, min(127, new_velocity))
|
| 199 |
+
|
| 200 |
+
return midi_data
|
| 201 |
|
| 202 |
+
def process_audio_files(files, intensity, style, conversion_method):
|
| 203 |
if not files:
|
| 204 |
+
return None, None, "Please upload audio files (MP3, WAV, etc.)"
|
| 205 |
|
| 206 |
+
converter = MP3ToHumanized()
|
| 207 |
processed_files = []
|
|
|
|
| 208 |
|
| 209 |
for file in files:
|
| 210 |
+
try:
|
| 211 |
+
# Convert audio to MIDI
|
| 212 |
+
midi_data = converter.audio_to_midi(file.name, conversion_method)
|
| 213 |
+
|
| 214 |
+
# Humanize the MIDI
|
| 215 |
+
humanized_midi = converter.humanize_midi(midi_data, intensity, style)
|
| 216 |
+
|
| 217 |
+
# Save humanized MIDI
|
| 218 |
+
output_path = tempfile.mktemp(suffix='_humanized.mid')
|
| 219 |
+
humanized_midi.write(output_path)
|
| 220 |
+
processed_files.append(output_path)
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
return None, None, f"Error processing {file.name}: {str(e)}"
|
| 224 |
|
| 225 |
if processed_files:
|
| 226 |
+
# Create audio preview from first file
|
| 227 |
+
preview_audio = None
|
| 228 |
+
try:
|
| 229 |
+
# Convert MIDI back to audio for preview
|
| 230 |
+
midi_data = pretty_midi.PrettyMIDI(processed_files[0])
|
| 231 |
+
audio_data = midi_data.synthesize()
|
| 232 |
+
preview_path = tempfile.mktemp(suffix='_preview.wav')
|
| 233 |
+
sf.write(preview_path, audio_data, 44100)
|
| 234 |
+
preview_audio = preview_path
|
| 235 |
+
except:
|
| 236 |
+
preview_audio = None
|
| 237 |
+
|
| 238 |
+
return processed_files, preview_audio, f"✅ Successfully processed {len(processed_files)} files!"
|
| 239 |
else:
|
| 240 |
return None, None, "❌ No files were processed successfully."
|
| 241 |
|
| 242 |
+
# Create Gradio interface
|
| 243 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="MP3 HumanizeBot") as demo:
|
| 244 |
gr.Markdown("""
|
| 245 |
+
# 🎵 MP3 HumanizeBot
|
| 246 |
+
**Convert MP3/Audio to MIDI and remove AI traces to sound human-made!**
|
| 247 |
|
| 248 |
+
Upload audio files from AI music generators, convert to MIDI, and apply natural humanization.
|
| 249 |
""")
|
| 250 |
|
| 251 |
with gr.Row():
|
| 252 |
with gr.Column(scale=1):
|
| 253 |
+
gr.Markdown("### 📁 Upload Audio Files")
|
| 254 |
|
| 255 |
file_input = gr.File(
|
| 256 |
file_count="multiple",
|
| 257 |
+
file_types=[".mp3", ".wav", ".ogg", ".m4a", ".flac"],
|
| 258 |
+
label="Upload Audio Files",
|
| 259 |
type="filepath"
|
| 260 |
)
|
| 261 |
|
| 262 |
+
conversion_method = gr.Radio(
|
| 263 |
+
["basic", "melody", "rhythm"],
|
| 264 |
+
value="basic",
|
| 265 |
+
label="🎵 Conversion Method",
|
| 266 |
+
info="Basic = general purpose, Melody = focus on tunes, Rhythm = focus on beats"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
intensity = gr.Slider(
|
| 270 |
0.1, 1.0,
|
| 271 |
value=0.7,
|
| 272 |
+
label="🎚️ Humanization Intensity"
|
|
|
|
| 273 |
)
|
| 274 |
|
| 275 |
style = gr.Radio(
|
| 276 |
["organic", "groovy", "gentle"],
|
| 277 |
value="organic",
|
| 278 |
+
label="🎸 Humanization Style"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
)
|
| 280 |
|
| 281 |
process_btn = gr.Button(
|
| 282 |
+
"✨ Convert & Humanize!",
|
| 283 |
variant="primary",
|
| 284 |
size="lg"
|
| 285 |
)
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
audio_output = gr.Audio(
|
| 296 |
+
label="MIDI Audio Preview",
|
| 297 |
interactive=False
|
| 298 |
)
|
| 299 |
|
| 300 |
status = gr.Textbox(
|
| 301 |
label="Status",
|
| 302 |
interactive=False,
|
| 303 |
+
max_lines=4
|
| 304 |
)
|
| 305 |
|
| 306 |
+
with gr.Accordion("ℹ️ How It Works", open=False):
|
|
|
|
| 307 |
gr.Markdown("""
|
| 308 |
+
**Process:**
|
| 309 |
+
1. **Upload** your AI-generated audio files (MP3, WAV, etc.)
|
| 310 |
+
2. **Convert** to MIDI using pitch and rhythm detection
|
| 311 |
+
3. **Humanize** with timing and velocity variations
|
| 312 |
+
4. **Download** humanized MIDI files
|
| 313 |
+
|
| 314 |
+
**Conversion Methods:**
|
| 315 |
+
- **Basic**: General purpose conversion for most music
|
| 316 |
+
- **Melody**: Focuses on extracting melodic content
|
| 317 |
+
- **Rhythm**: Focuses on drum patterns and beats
|
| 318 |
+
|
| 319 |
+
**Note**: Audio-to-MIDI conversion is challenging and works best with:
|
| 320 |
+
- Clear melodic lines
|
| 321 |
+
- Good audio quality
|
| 322 |
+
- Not too much reverb/effects
|
| 323 |
""")
|
| 324 |
|
|
|
|
| 325 |
process_btn.click(
|
| 326 |
+
fn=process_audio_files,
|
| 327 |
+
inputs=[file_input, intensity, style, conversion_method],
|
| 328 |
outputs=[file_output, audio_output, status]
|
| 329 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
if __name__ == "__main__":
|
| 332 |
demo.launch(debug=True)
|