Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,180 +4,137 @@ import numpy as np
|
|
| 4 |
import tempfile
|
| 5 |
import os
|
| 6 |
import librosa
|
| 7 |
-
import torch
|
| 8 |
-
import torchaudio
|
| 9 |
-
from pathlib import Path
|
| 10 |
import soundfile as sf
|
|
|
|
|
|
|
| 11 |
import io
|
| 12 |
|
| 13 |
class MP3ToHumanized:
|
| 14 |
def __init__(self):
|
| 15 |
self.groove_profiles = {
|
| 16 |
-
"drums": {"timing_var": 0.02, "velocity_var": 15
|
| 17 |
-
"melody": {"timing_var": 0.01, "velocity_var": 10
|
| 18 |
-
"bass": {"timing_var": 0.015, "velocity_var": 12
|
| 19 |
-
"chords": {"timing_var": 0.008, "velocity_var": 8
|
| 20 |
-
"other": {"timing_var": 0.01, "velocity_var": 10
|
| 21 |
}
|
| 22 |
-
|
| 23 |
-
def
|
| 24 |
-
"""Convert audio
|
| 25 |
try:
|
| 26 |
-
# Load audio
|
| 27 |
-
y, sr = librosa.load(audio_path, sr=22050)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
else:
|
| 34 |
-
return self.rhythm_based_midi(y, sr)
|
| 35 |
-
|
| 36 |
except Exception as e:
|
| 37 |
-
raise Exception(f"Audio
|
| 38 |
|
| 39 |
-
def
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# Create instrument
|
| 45 |
-
piano_program = pretty_midi.instrument_name_to_program('Acoustic Grand Piano')
|
| 46 |
-
instrument = pretty_midi.Instrument(program=piano_program)
|
| 47 |
-
|
| 48 |
-
# Detect onsets (when notes start)
|
| 49 |
-
onset_frames = librosa.onset.onset_detect(y=y, sr=sr, hop_length=512, backtrack=True)
|
| 50 |
-
onset_times = librosa.frames_to_time(onset_frames, sr=sr, hop_length=512)
|
| 51 |
-
|
| 52 |
-
# Estimate pitch for each onset
|
| 53 |
-
for onset_time in onset_times:
|
| 54 |
-
# Extract a segment around the onset
|
| 55 |
-
start_sample = int(onset_time * sr)
|
| 56 |
-
end_sample = start_sample + int(0.5 * sr) # 500ms segment
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
if
|
| 65 |
-
|
| 66 |
-
midi_note = int(69 + 12 * np.log2(f0 / 440.0))
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
start=onset_time,
|
| 75 |
-
end=onset_time + 0.5 # 500ms duration
|
| 76 |
-
)
|
| 77 |
-
instrument.notes.append(note)
|
| 78 |
-
|
| 79 |
-
midi.instruments.append(instrument)
|
| 80 |
-
return midi
|
| 81 |
-
|
| 82 |
-
def melody_extraction_to_midi(self, y, sr):
|
| 83 |
-
"""Extract melody and convert to MIDI"""
|
| 84 |
-
midi = pretty_midi.PrettyMIDI()
|
| 85 |
-
instrument = pretty_midi.Instrument(program=0) # Piano
|
| 86 |
-
|
| 87 |
-
# Use librosa's melody extraction
|
| 88 |
-
f0, voiced_flag, voiced_probs = librosa.pyin(
|
| 89 |
-
y,
|
| 90 |
-
fmin=librosa.note_to_hz('C2'),
|
| 91 |
-
fmax=librosa.note_to_hz('C7'),
|
| 92 |
-
sr=sr
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
times = librosa.times_like(f0, sr=sr, hop_length=512)
|
| 96 |
-
|
| 97 |
-
current_note = None
|
| 98 |
-
note_start = 0
|
| 99 |
-
|
| 100 |
-
for time, freq, voiced in zip(times, f0, voiced_flag):
|
| 101 |
-
if voiced and not np.isnan(freq):
|
| 102 |
-
midi_note = int(69 + 12 * np.log2(freq / 440.0))
|
| 103 |
-
if 0 <= midi_note <= 127:
|
| 104 |
-
if current_note != midi_note:
|
| 105 |
-
if current_note is not None:
|
| 106 |
-
# End previous note
|
| 107 |
-
note = pretty_midi.Note(
|
| 108 |
-
velocity=80,
|
| 109 |
-
pitch=current_note,
|
| 110 |
-
start=note_start,
|
| 111 |
-
end=time
|
| 112 |
-
)
|
| 113 |
-
instrument.notes.append(note)
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
note = pretty_midi.Note(
|
| 122 |
velocity=80,
|
| 123 |
-
pitch=
|
| 124 |
-
start=
|
| 125 |
-
end=
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
def
|
| 134 |
-
"""
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
drum_instrument = pretty_midi.Instrument(program=0, is_drum=True)
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
-
|
|
|
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
note = pretty_midi.Note(
|
| 148 |
-
velocity=100,
|
| 149 |
-
pitch=36, # Kick drum
|
| 150 |
-
start=beat_time,
|
| 151 |
-
end=beat_time + 0.1
|
| 152 |
-
)
|
| 153 |
-
drum_instrument.notes.append(note)
|
| 154 |
-
|
| 155 |
-
midi.instruments.append(drum_instrument)
|
| 156 |
-
return midi
|
| 157 |
|
| 158 |
-
def
|
| 159 |
-
"""
|
| 160 |
-
|
| 161 |
-
# Use autocorrelation for pitch detection
|
| 162 |
-
corr = np.correlate(segment, segment, mode='full')
|
| 163 |
-
corr = corr[len(corr)//2:]
|
| 164 |
-
|
| 165 |
-
# Find the first peak after zero lag (fundamental frequency)
|
| 166 |
-
d = np.diff(corr)
|
| 167 |
-
start = np.where(d > 0)[0]
|
| 168 |
-
if len(start) > 0:
|
| 169 |
-
start = start[0]
|
| 170 |
-
peak = np.argmax(corr[start:]) + start
|
| 171 |
-
freq = sr / peak if peak > 0 else 0
|
| 172 |
-
return freq
|
| 173 |
-
except:
|
| 174 |
-
pass
|
| 175 |
-
return 0
|
| 176 |
|
| 177 |
-
def humanize_midi(self, midi_data, intensity=0.7
|
| 178 |
-
"""
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 181 |
for instrument in midi_data.instruments:
|
| 182 |
inst_type = "drums" if instrument.is_drum else "melody"
|
| 183 |
profile = self.groove_profiles[inst_type]
|
|
@@ -187,32 +144,43 @@ class MP3ToHumanized:
|
|
| 187 |
timing_shift = np.random.normal(0, profile["timing_var"] * intensity)
|
| 188 |
note.start = max(0, note.start + timing_shift)
|
| 189 |
|
| 190 |
-
# Humanize duration
|
| 191 |
if not instrument.is_drum:
|
| 192 |
-
duration_shift = np.random.normal(0, profile["timing_var"] * 0.
|
| 193 |
note.end = max(note.start + 0.1, note.end + duration_shift)
|
| 194 |
|
| 195 |
# Humanize velocity
|
| 196 |
vel_shift = np.random.randint(-profile["velocity_var"], profile["velocity_var"])
|
| 197 |
new_velocity = note.velocity + int(vel_shift * intensity)
|
| 198 |
-
note.velocity = max(
|
| 199 |
|
| 200 |
return midi_data
|
| 201 |
|
| 202 |
-
def process_audio_files(files, intensity
|
| 203 |
if not files:
|
| 204 |
return None, None, "Please upload audio files (MP3, WAV, etc.)"
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
converter = MP3ToHumanized()
|
| 207 |
processed_files = []
|
| 208 |
|
| 209 |
for file in files:
|
| 210 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
# Convert audio to MIDI
|
| 212 |
-
midi_data = converter.
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
# Humanize the MIDI
|
| 215 |
-
humanized_midi = converter.humanize_midi(midi_data, intensity
|
| 216 |
|
| 217 |
# Save humanized MIDI
|
| 218 |
output_path = tempfile.mktemp(suffix='_humanized.mid')
|
|
@@ -220,32 +188,35 @@ def process_audio_files(files, intensity, style, conversion_method):
|
|
| 220 |
processed_files.append(output_path)
|
| 221 |
|
| 222 |
except Exception as e:
|
| 223 |
-
|
|
|
|
|
|
|
| 224 |
|
| 225 |
if processed_files:
|
| 226 |
-
# Create audio preview
|
| 227 |
preview_audio = None
|
| 228 |
try:
|
| 229 |
-
# Convert MIDI back to audio for preview
|
| 230 |
midi_data = pretty_midi.PrettyMIDI(processed_files[0])
|
| 231 |
audio_data = midi_data.synthesize()
|
| 232 |
preview_path = tempfile.mktemp(suffix='_preview.wav')
|
| 233 |
sf.write(preview_path, audio_data, 44100)
|
| 234 |
preview_audio = preview_path
|
| 235 |
-
except:
|
|
|
|
| 236 |
preview_audio = None
|
| 237 |
|
| 238 |
-
|
|
|
|
| 239 |
else:
|
| 240 |
return None, None, "β No files were processed successfully."
|
| 241 |
|
| 242 |
# Create Gradio interface
|
| 243 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="
|
| 244 |
gr.Markdown("""
|
| 245 |
-
# π΅
|
| 246 |
-
**Convert MP3/Audio to MIDI
|
| 247 |
|
| 248 |
-
Upload audio files from AI music generators
|
| 249 |
""")
|
| 250 |
|
| 251 |
with gr.Row():
|
|
@@ -254,35 +225,33 @@ with gr.Blocks(theme=gr.themes.Soft(), title="MP3 HumanizeBot") as demo:
|
|
| 254 |
|
| 255 |
file_input = gr.File(
|
| 256 |
file_count="multiple",
|
| 257 |
-
file_types=[".mp3", ".wav", ".
|
| 258 |
-
label="Upload
|
| 259 |
type="filepath"
|
| 260 |
)
|
| 261 |
|
| 262 |
-
conversion_method = gr.Radio(
|
| 263 |
-
["basic", "melody", "rhythm"],
|
| 264 |
-
value="basic",
|
| 265 |
-
label="π΅ Conversion Method",
|
| 266 |
-
info="Basic = general purpose, Melody = focus on tunes, Rhythm = focus on beats"
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
intensity = gr.Slider(
|
| 270 |
0.1, 1.0,
|
| 271 |
value=0.7,
|
| 272 |
-
label="ποΈ Humanization Intensity"
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
style = gr.Radio(
|
| 276 |
-
["organic", "groovy", "gentle"],
|
| 277 |
-
value="organic",
|
| 278 |
-
label="πΈ Humanization Style"
|
| 279 |
)
|
| 280 |
|
| 281 |
process_btn = gr.Button(
|
| 282 |
-
"β¨ Convert & Humanize!",
|
| 283 |
variant="primary",
|
| 284 |
size="lg"
|
| 285 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
with gr.Column(scale=1):
|
| 288 |
gr.Markdown("### π₯ Download Results")
|
|
@@ -294,37 +263,49 @@ with gr.Blocks(theme=gr.themes.Soft(), title="MP3 HumanizeBot") as demo:
|
|
| 294 |
|
| 295 |
audio_output = gr.Audio(
|
| 296 |
label="MIDI Audio Preview",
|
| 297 |
-
interactive=False
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
status = gr.Textbox(
|
| 301 |
label="Status",
|
| 302 |
interactive=False,
|
| 303 |
-
max_lines=
|
| 304 |
)
|
| 305 |
|
| 306 |
-
with gr.Accordion("
|
| 307 |
gr.Markdown("""
|
| 308 |
-
**
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
|
| 314 |
-
**
|
| 315 |
-
-
|
| 316 |
-
-
|
| 317 |
-
-
|
|
|
|
| 318 |
|
| 319 |
-
**
|
| 320 |
-
-
|
| 321 |
-
-
|
| 322 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
""")
|
| 324 |
|
| 325 |
process_btn.click(
|
| 326 |
fn=process_audio_files,
|
| 327 |
-
inputs=[file_input, intensity
|
| 328 |
outputs=[file_output, audio_output, status]
|
| 329 |
)
|
| 330 |
|
|
|
|
| 4 |
import tempfile
|
| 5 |
import os
|
| 6 |
import librosa
|
|
|
|
|
|
|
|
|
|
| 7 |
import soundfile as sf
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import subprocess
|
| 10 |
import io
|
| 11 |
|
| 12 |
class MP3ToHumanized:
|
| 13 |
def __init__(self):
|
| 14 |
self.groove_profiles = {
|
| 15 |
+
"drums": {"timing_var": 0.02, "velocity_var": 15},
|
| 16 |
+
"melody": {"timing_var": 0.01, "velocity_var": 10},
|
| 17 |
+
"bass": {"timing_var": 0.015, "velocity_var": 12},
|
| 18 |
+
"chords": {"timing_var": 0.008, "velocity_var": 8},
|
| 19 |
+
"other": {"timing_var": 0.01, "velocity_var": 10}
|
| 20 |
}
|
| 21 |
+
|
| 22 |
+
def convert_to_wav(self, audio_path):
|
| 23 |
+
"""Convert any audio format to WAV using librosa"""
|
| 24 |
try:
|
| 25 |
+
# Load audio with librosa (handles MP3, WAV, etc.)
|
| 26 |
+
y, sr = librosa.load(audio_path, sr=22050, mono=True)
|
| 27 |
|
| 28 |
+
# Save as temporary WAV file
|
| 29 |
+
wav_path = tempfile.mktemp(suffix='.wav')
|
| 30 |
+
sf.write(wav_path, y, sr)
|
| 31 |
+
return wav_path, sr
|
|
|
|
|
|
|
|
|
|
| 32 |
except Exception as e:
|
| 33 |
+
raise Exception(f"Audio conversion failed: {str(e)}")
|
| 34 |
|
| 35 |
+
def simple_audio_to_midi(self, audio_path):
|
| 36 |
+
"""Simple but effective audio to MIDI conversion"""
|
| 37 |
+
try:
|
| 38 |
+
# Convert to WAV first
|
| 39 |
+
wav_path, sr = self.convert_to_wav(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Load the converted audio
|
| 42 |
+
y, sr = librosa.load(wav_path, sr=sr)
|
| 43 |
+
|
| 44 |
+
# Create MIDI object
|
| 45 |
+
midi = pretty_midi.PrettyMIDI()
|
| 46 |
+
instrument = pretty_midi.Instrument(program=0) # Acoustic Grand Piano
|
| 47 |
+
|
| 48 |
+
# Method 1: Onset detection with pitch estimation
|
| 49 |
+
onset_frames = librosa.onset.onset_detect(
|
| 50 |
+
y=y, sr=sr,
|
| 51 |
+
hop_length=512,
|
| 52 |
+
backtrack=True,
|
| 53 |
+
delta=0.2
|
| 54 |
+
)
|
| 55 |
+
onset_times = librosa.frames_to_time(onset_frames, sr=sr, hop_length=512)
|
| 56 |
+
|
| 57 |
+
# Get tempo for musical timing
|
| 58 |
+
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr, units='time')
|
| 59 |
+
|
| 60 |
+
notes_added = 0
|
| 61 |
+
for i, onset_time in enumerate(onset_times):
|
| 62 |
+
if notes_added >= 50: # Limit notes to avoid clutter
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
# Extract a segment around the onset for pitch detection
|
| 66 |
+
start_idx = int(onset_time * sr)
|
| 67 |
+
end_idx = min(start_idx + int(0.3 * sr), len(y)) # 300ms window
|
| 68 |
|
| 69 |
+
if end_idx > start_idx:
|
| 70 |
+
segment = y[start_idx:end_idx]
|
|
|
|
| 71 |
|
| 72 |
+
# Simple pitch detection using FFT
|
| 73 |
+
frequencies, magnitudes = self.simple_pitch_detection(segment, sr)
|
| 74 |
+
|
| 75 |
+
if len(frequencies) > 0:
|
| 76 |
+
# Take the strongest frequency
|
| 77 |
+
main_freq = frequencies[np.argmax(magnitudes)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
if 80 < main_freq < 1000: # Reasonable frequency range
|
| 80 |
+
midi_note = self.freq_to_midi(main_freq)
|
| 81 |
+
|
| 82 |
+
if 48 <= midi_note <= 84: # C3 to C6 range
|
| 83 |
+
# Create note
|
| 84 |
+
note = pretty_midi.Note(
|
| 85 |
+
velocity=np.random.randint(70, 100),
|
| 86 |
+
pitch=midi_note,
|
| 87 |
+
start=onset_time,
|
| 88 |
+
end=onset_time + 0.4 # 400ms duration
|
| 89 |
+
)
|
| 90 |
+
instrument.notes.append(note)
|
| 91 |
+
notes_added += 1
|
| 92 |
+
|
| 93 |
+
# If we didn't get enough notes, add some rhythmic elements
|
| 94 |
+
if notes_added < 10 and len(beat_frames) > 0:
|
| 95 |
+
drum_instrument = pretty_midi.Instrument(program=0, is_drum=True)
|
| 96 |
+
for beat_time in beat_frames[:8]: # First 8 beats
|
| 97 |
note = pretty_midi.Note(
|
| 98 |
velocity=80,
|
| 99 |
+
pitch=36, # Kick drum
|
| 100 |
+
start=beat_time,
|
| 101 |
+
end=beat_time + 0.2
|
| 102 |
)
|
| 103 |
+
drum_instrument.notes.append(note)
|
| 104 |
+
midi.instruments.append(drum_instrument)
|
| 105 |
+
|
| 106 |
+
if len(instrument.notes) > 0:
|
| 107 |
+
midi.instruments.append(instrument)
|
| 108 |
+
|
| 109 |
+
return midi
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
raise Exception(f"MIDI conversion failed: {str(e)}")
|
| 113 |
|
| 114 |
+
def simple_pitch_detection(self, segment, sr):
|
| 115 |
+
"""Simple FFT-based pitch detection"""
|
| 116 |
+
# Apply windowing
|
| 117 |
+
window = np.hanning(len(segment))
|
| 118 |
+
segment = segment * window
|
|
|
|
| 119 |
|
| 120 |
+
# FFT
|
| 121 |
+
fft = np.fft.rfft(segment)
|
| 122 |
+
magnitudes = np.abs(fft)
|
| 123 |
+
frequencies = np.fft.rfftfreq(len(segment), 1/sr)
|
| 124 |
|
| 125 |
+
# Filter reasonable frequencies
|
| 126 |
+
mask = (frequencies > 80) & (frequencies < 1000)
|
| 127 |
+
return frequencies[mask], magnitudes[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
def freq_to_midi(self, frequency):
|
| 130 |
+
"""Convert frequency to MIDI note number"""
|
| 131 |
+
return int(69 + 12 * np.log2(frequency / 440.0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
def humanize_midi(self, midi_data, intensity=0.7):
|
| 134 |
+
"""Apply humanization to MIDI"""
|
| 135 |
+
if len(midi_data.instruments) == 0:
|
| 136 |
+
return midi_data
|
| 137 |
+
|
| 138 |
for instrument in midi_data.instruments:
|
| 139 |
inst_type = "drums" if instrument.is_drum else "melody"
|
| 140 |
profile = self.groove_profiles[inst_type]
|
|
|
|
| 144 |
timing_shift = np.random.normal(0, profile["timing_var"] * intensity)
|
| 145 |
note.start = max(0, note.start + timing_shift)
|
| 146 |
|
| 147 |
+
# Humanize duration
|
| 148 |
if not instrument.is_drum:
|
| 149 |
+
duration_shift = np.random.normal(0, profile["timing_var"] * 0.5 * intensity)
|
| 150 |
note.end = max(note.start + 0.1, note.end + duration_shift)
|
| 151 |
|
| 152 |
# Humanize velocity
|
| 153 |
vel_shift = np.random.randint(-profile["velocity_var"], profile["velocity_var"])
|
| 154 |
new_velocity = note.velocity + int(vel_shift * intensity)
|
| 155 |
+
note.velocity = max(40, min(127, new_velocity))
|
| 156 |
|
| 157 |
return midi_data
|
| 158 |
|
| 159 |
+
def process_audio_files(files, intensity):
|
| 160 |
if not files:
|
| 161 |
return None, None, "Please upload audio files (MP3, WAV, etc.)"
|
| 162 |
|
| 163 |
+
# Show what files we received
|
| 164 |
+
file_info = f"Received {len(files)} files: {[f.name for f in files]}"
|
| 165 |
+
print(file_info)
|
| 166 |
+
|
| 167 |
converter = MP3ToHumanized()
|
| 168 |
processed_files = []
|
| 169 |
|
| 170 |
for file in files:
|
| 171 |
try:
|
| 172 |
+
# Check file type
|
| 173 |
+
file_ext = Path(file.name).suffix.lower()
|
| 174 |
+
print(f"Processing {file.name} (extension: {file_ext})")
|
| 175 |
+
|
| 176 |
# Convert audio to MIDI
|
| 177 |
+
midi_data = converter.simple_audio_to_midi(file.name)
|
| 178 |
+
|
| 179 |
+
if len(midi_data.instruments) == 0 or sum(len(instr.notes) for instr in midi_data.instruments) == 0:
|
| 180 |
+
return None, None, f"β Could not extract musical content from {file.name}. Try a different audio file with clear melody."
|
| 181 |
|
| 182 |
# Humanize the MIDI
|
| 183 |
+
humanized_midi = converter.humanize_midi(midi_data, intensity)
|
| 184 |
|
| 185 |
# Save humanized MIDI
|
| 186 |
output_path = tempfile.mktemp(suffix='_humanized.mid')
|
|
|
|
| 188 |
processed_files.append(output_path)
|
| 189 |
|
| 190 |
except Exception as e:
|
| 191 |
+
error_msg = f"Error processing {file.name}: {str(e)}"
|
| 192 |
+
print(error_msg)
|
| 193 |
+
return None, None, error_msg
|
| 194 |
|
| 195 |
if processed_files:
|
| 196 |
+
# Create audio preview
|
| 197 |
preview_audio = None
|
| 198 |
try:
|
|
|
|
| 199 |
midi_data = pretty_midi.PrettyMIDI(processed_files[0])
|
| 200 |
audio_data = midi_data.synthesize()
|
| 201 |
preview_path = tempfile.mktemp(suffix='_preview.wav')
|
| 202 |
sf.write(preview_path, audio_data, 44100)
|
| 203 |
preview_audio = preview_path
|
| 204 |
+
except Exception as e:
|
| 205 |
+
print(f"Preview generation failed: {e}")
|
| 206 |
preview_audio = None
|
| 207 |
|
| 208 |
+
success_msg = f"β
Successfully processed {len(processed_files)} files! Converted audio to MIDI and applied humanization."
|
| 209 |
+
return processed_files, preview_audio, success_msg
|
| 210 |
else:
|
| 211 |
return None, None, "β No files were processed successfully."
|
| 212 |
|
| 213 |
# Create Gradio interface
|
| 214 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Audio HumanizeBot") as demo:
|
| 215 |
gr.Markdown("""
|
| 216 |
+
# π΅ Audio HumanizeBot
|
| 217 |
+
**Convert MP3/Audio to humanized MIDI - Remove AI traces from your music!**
|
| 218 |
|
| 219 |
+
Upload audio files from AI music generators and get humanized MIDI back.
|
| 220 |
""")
|
| 221 |
|
| 222 |
with gr.Row():
|
|
|
|
| 225 |
|
| 226 |
file_input = gr.File(
|
| 227 |
file_count="multiple",
|
| 228 |
+
file_types=[".mp3", ".wav", ".m4a", ".ogg", ".flac"],
|
| 229 |
+
label="Upload your AI-generated audio files",
|
| 230 |
type="filepath"
|
| 231 |
)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
intensity = gr.Slider(
|
| 234 |
0.1, 1.0,
|
| 235 |
value=0.7,
|
| 236 |
+
label="ποΈ Humanization Intensity",
|
| 237 |
+
info="How much human feel to add"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
)
|
| 239 |
|
| 240 |
process_btn = gr.Button(
|
| 241 |
+
"β¨ Convert & Humanize Audio!",
|
| 242 |
variant="primary",
|
| 243 |
size="lg"
|
| 244 |
)
|
| 245 |
+
|
| 246 |
+
gr.Markdown("""
|
| 247 |
+
**Supported formats:** MP3, WAV, M4A, OGG, FLAC
|
| 248 |
+
|
| 249 |
+
**Works best with:**
|
| 250 |
+
- Clear melodic content
|
| 251 |
+
- AI-generated music
|
| 252 |
+
- Not too much reverb/effects
|
| 253 |
+
- 10-30 second clips
|
| 254 |
+
""")
|
| 255 |
|
| 256 |
with gr.Column(scale=1):
|
| 257 |
gr.Markdown("### π₯ Download Results")
|
|
|
|
| 263 |
|
| 264 |
audio_output = gr.Audio(
|
| 265 |
label="MIDI Audio Preview",
|
| 266 |
+
interactive=False,
|
| 267 |
+
type="filepath"
|
| 268 |
)
|
| 269 |
|
| 270 |
status = gr.Textbox(
|
| 271 |
label="Status",
|
| 272 |
interactive=False,
|
| 273 |
+
max_lines=5
|
| 274 |
)
|
| 275 |
|
| 276 |
+
with gr.Accordion("π― Tips for Best Results", open=True):
|
| 277 |
gr.Markdown("""
|
| 278 |
+
**For best conversion:**
|
| 279 |
+
- Use clear AI-generated music with obvious melodies
|
| 280 |
+
- Avoid heavily processed/remixed tracks
|
| 281 |
+
- 10-30 second clips work better than full songs
|
| 282 |
+
- Instrumental music converts better than vocal-heavy tracks
|
| 283 |
|
| 284 |
+
**What to expect:**
|
| 285 |
+
- The MIDI will capture the main melodic and rhythmic ideas
|
| 286 |
+
- You can import the MIDI into any DAW (FL Studio, Ableton, etc.)
|
| 287 |
+
- Use high-quality instrument sounds in your DAW for best results
|
| 288 |
+
- The humanization adds natural timing and velocity variations
|
| 289 |
|
| 290 |
+
**Limitations:**
|
| 291 |
+
- Complex arrangements may not convert perfectly
|
| 292 |
+
- Audio-to-MIDI is an approximation
|
| 293 |
+
- Very ambient or effect-heavy music may not work well
|
| 294 |
+
""")
|
| 295 |
+
|
| 296 |
+
# Examples section
|
| 297 |
+
with gr.Accordion("π΅ Try These Example Files", open=False):
|
| 298 |
+
gr.Markdown("""
|
| 299 |
+
**Test with these types of audio:**
|
| 300 |
+
- AI piano melodies
|
| 301 |
+
- Simple electronic beats
|
| 302 |
+
- Clear synth lines
|
| 303 |
+
- Drum patterns from AI generators
|
| 304 |
""")
|
| 305 |
|
| 306 |
process_btn.click(
|
| 307 |
fn=process_audio_files,
|
| 308 |
+
inputs=[file_input, intensity],
|
| 309 |
outputs=[file_output, audio_output, status]
|
| 310 |
)
|
| 311 |
|