Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -11,9 +11,7 @@ import cv2
|
|
| 11 |
import math
|
| 12 |
|
| 13 |
# --- استيراد من الملفات المنظمة في مشروعك ---
|
| 14 |
-
|
| 15 |
-
from model import build_interfuser_model
|
| 16 |
-
# نفترض أن بقية المنطق موجود في logic.py
|
| 17 |
from logic import (
|
| 18 |
transform, lidar_transform, InterfuserController, ControllerConfig,
|
| 19 |
Tracker, DisplayInterface, render, render_waypoints, render_self_car,
|
|
@@ -23,30 +21,23 @@ from logic import (
|
|
| 23 |
# ==============================================================================
|
| 24 |
# 1. إعدادات ومسارات النماذج
|
| 25 |
# ==============================================================================
|
| 26 |
-
WEIGHTS_DIR = "model"
|
| 27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
|
| 29 |
-
# متغير عام لتخزين النموذج المحمّل حاليًا
|
| 30 |
-
current_model = None
|
| 31 |
-
|
| 32 |
# قاموس لتحديد الإعدادات الخاصة بكل نموذج.
|
| 33 |
-
# اسم المفتاح يجب أن يطابق اسم ملف الأوزان (بدون .pth).
|
| 34 |
-
# إذا لم يتم تحديد إعدادات لنموذج ما، سيتم استخدام الإعدادات الافتراضية في دالة البناء.
|
| 35 |
MODELS_SPECIFIC_CONFIGS = {
|
| 36 |
"interfuser_baseline": {
|
| 37 |
"rgb_backbone_name": "r50",
|
| 38 |
"embed_dim": 256,
|
| 39 |
-
"direct_concat": True,
|
| 40 |
},
|
| 41 |
"interfuser_lightweight": {
|
| 42 |
"rgb_backbone_name": "r26",
|
| 43 |
"embed_dim": 128,
|
| 44 |
"enc_depth": 4,
|
| 45 |
"dec_depth": 4,
|
| 46 |
-
"direct_concat": True,
|
| 47 |
}
|
| 48 |
-
# أضف هنا أي إعدادات لنماذج أخرى لديك
|
| 49 |
-
# "my_other_model": { "direct_concat": False, ... }
|
| 50 |
}
|
| 51 |
|
| 52 |
def find_available_models():
|
|
@@ -56,53 +47,45 @@ def find_available_models():
|
|
| 56 |
if not os.path.isdir(WEIGHTS_DIR):
|
| 57 |
print(f"تحذير: مجلد الأوزان '{WEIGHTS_DIR}' غير موجود.")
|
| 58 |
return []
|
| 59 |
-
|
| 60 |
-
models = [f.replace(".pth", "") for f in os.listdir(WEIGHTS_DIR) if f.endswith(".pth")]
|
| 61 |
-
return models
|
| 62 |
|
| 63 |
# ==============================================================================
|
| 64 |
-
# 2. دالة تحميل النموذج
|
| 65 |
# ==============================================================================
|
| 66 |
def load_model(model_name: str):
|
| 67 |
"""
|
| 68 |
-
|
| 69 |
"""
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
if not model_name:
|
| 73 |
-
return "الرجاء اختيار نموذج من القائمة."
|
| 74 |
|
| 75 |
weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth")
|
| 76 |
-
print(f"
|
| 77 |
|
| 78 |
-
# الحصول على الإعدادات المخصصة للنموذج، أو قاموس فارغ إذا لم توجد
|
| 79 |
model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {})
|
| 80 |
-
|
| 81 |
-
# بناء النموذج باستخدام الإعدادات المحددة
|
| 82 |
model = build_interfuser_model(model_config)
|
| 83 |
|
| 84 |
if not os.path.exists(weights_path):
|
| 85 |
-
gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود.
|
| 86 |
else:
|
| 87 |
try:
|
| 88 |
-
# استخدام weights_only=True للأمان
|
| 89 |
state_dic = torch.load(weights_path, map_location=device, weights_only=True)
|
| 90 |
model.load_state_dict(state_dic)
|
| 91 |
print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.")
|
| 92 |
except Exception as e:
|
| 93 |
-
gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.
|
| 94 |
|
| 95 |
model.to(device)
|
| 96 |
model.eval()
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
return f"تم تحميل نموذج: {model_name}"
|
| 101 |
|
| 102 |
# ==============================================================================
|
| 103 |
-
# 3. دالة التشغيل الرئيسية
|
| 104 |
# ==============================================================================
|
| 105 |
def run_single_frame(
|
|
|
|
| 106 |
rgb_image_path,
|
| 107 |
rgb_left_image_path,
|
| 108 |
rgb_right_image_path,
|
|
@@ -111,40 +94,36 @@ def run_single_frame(
|
|
| 111 |
measurements_path,
|
| 112 |
target_point_list
|
| 113 |
):
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
raise gr.Error("الرجاء اختيار وتحميل نموذج أولاً من القائمة المنسدلة.")
|
| 118 |
|
| 119 |
try:
|
| 120 |
# --- 1. قراءة ومعالجة المدخلات ---
|
| 121 |
-
if not rgb_image_path:
|
| 122 |
-
|
| 123 |
|
| 124 |
rgb_image_pil = Image.open(rgb_image_path.name).convert("RGB")
|
|
|
|
| 125 |
rgb_left_pil = Image.open(rgb_left_image_path.name).convert("RGB") if rgb_left_image_path else rgb_image_pil
|
| 126 |
rgb_right_pil = Image.open(rgb_right_image_path.name).convert("RGB") if rgb_right_image_path else rgb_image_pil
|
| 127 |
rgb_center_pil = Image.open(rgb_center_image_path.name).convert("RGB") if rgb_center_image_path else rgb_image_pil
|
| 128 |
|
| 129 |
-
# تطبيق التحويلات لتحويل الصور إلى تنسورات
|
| 130 |
front_tensor = transform(rgb_image_pil).unsqueeze(0).to(device)
|
| 131 |
left_tensor = transform(rgb_left_pil).unsqueeze(0).to(device)
|
| 132 |
right_tensor = transform(rgb_right_pil).unsqueeze(0).to(device)
|
| 133 |
center_tensor = transform(rgb_center_pil).unsqueeze(0).to(device)
|
| 134 |
-
|
| 135 |
if lidar_image_path:
|
| 136 |
lidar_array = np.load(lidar_image_path.name)
|
| 137 |
-
if lidar_array.max() > 0:
|
| 138 |
-
lidar_array = (lidar_array / lidar_array.max()) * 255.0
|
| 139 |
lidar_pil = Image.fromarray(lidar_array.astype(np.uint8)).convert('RGB')
|
| 140 |
else:
|
| 141 |
lidar_pil = Image.fromarray(np.zeros((112, 112, 3), dtype=np.uint8))
|
| 142 |
lidar_tensor = lidar_transform(lidar_pil).unsqueeze(0).to(device)
|
| 143 |
|
| 144 |
-
with open(measurements_path.name, 'r') as f:
|
| 145 |
-
m_dict = json.load(f)
|
| 146 |
|
| 147 |
-
# إنشاء تنسور القياسات الصحيح (10 عناصر)
|
| 148 |
measurements_tensor = torch.tensor([[
|
| 149 |
m_dict.get('x', 0.0), m_dict.get('y', 0.0), m_dict.get('theta', 0.0),
|
| 150 |
m_dict.get('speed', 5.0), m_dict.get('steer', 0.0), m_dict.get('throttle', 0.0),
|
|
@@ -154,20 +133,15 @@ def run_single_frame(
|
|
| 154 |
|
| 155 |
target_point_tensor = torch.tensor([target_point_list], dtype=torch.float32).to(device)
|
| 156 |
|
| 157 |
-
# تجميع المدخلات للنموذج
|
| 158 |
inputs = {
|
| 159 |
-
'rgb': front_tensor,
|
| 160 |
-
'
|
| 161 |
-
'
|
| 162 |
-
'rgb_center': center_tensor,
|
| 163 |
-
'lidar': lidar_tensor,
|
| 164 |
-
'measurements': measurements_tensor,
|
| 165 |
-
'target_point': target_point_tensor
|
| 166 |
}
|
| 167 |
|
| 168 |
# --- 2. تشغيل النموذج ---
|
| 169 |
with torch.no_grad():
|
| 170 |
-
outputs =
|
| 171 |
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs
|
| 172 |
|
| 173 |
# --- 3. المعالجة اللاحقة والتصوّر ---
|
|
@@ -182,18 +156,16 @@ def run_single_frame(
|
|
| 182 |
|
| 183 |
controller = InterfuserController(ControllerConfig())
|
| 184 |
steer, throttle, brake, metadata = controller.run_step(
|
| 185 |
-
speed
|
| 186 |
-
|
| 187 |
-
stop_sign=stop_sign.sigmoid()[0, 1].item(), meta_data=updated_traffic
|
| 188 |
)
|
| 189 |
|
| 190 |
-
# إنشاء لوحة التحكم المرئية
|
| 191 |
map_t0, counts_t0 = render(updated_traffic, t=0)
|
| 192 |
map_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME)
|
| 193 |
map_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME)
|
| 194 |
|
| 195 |
wp_map = render_waypoints(waypoints_np)
|
| 196 |
-
self_car_map = render_self_car(
|
| 197 |
|
| 198 |
map_t0 = cv2.add(cv2.add(map_t0, wp_map), self_car_map)
|
| 199 |
map_t0 = cv2.resize(map_t0, (400, 400))
|
|
@@ -201,15 +173,11 @@ def run_single_frame(
|
|
| 201 |
map_t2 = cv2.add(ensure_rgb(map_t2), ensure_rgb(self_car_map)); map_t2 = cv2.resize(map_t2, (200, 200))
|
| 202 |
|
| 203 |
display = DisplayInterface()
|
| 204 |
-
light_state = "Red" if traffic_light.sigmoid()[0,0].item() > 0.5 else "Green"
|
| 205 |
-
stop_sign_state = "Yes" if stop_sign.sigmoid()[0,1].item() > 0.5 else "No"
|
| 206 |
|
| 207 |
interface_data = {
|
| 208 |
'camera_view': np.array(rgb_image_pil), 'map_t0': map_t0, 'map_t1': map_t1, 'map_t2': map_t2,
|
| 209 |
-
'text_info': {
|
| 210 |
-
'Frame': 'API Frame', 'Control': f"S:{steer:.2f} T:{throttle:.2f} B:{int(brake)}",
|
| 211 |
-
'Light': f"L: {light_state}", 'Stop': f"St: {stop_sign_state}"
|
| 212 |
-
},
|
| 213 |
'object_counts': {'t0': counts_t0, 't1': counts_t1, 't2': counts_t2}
|
| 214 |
}
|
| 215 |
|
|
@@ -233,12 +201,14 @@ def run_single_frame(
|
|
| 233 |
# 4. تعريف واجهة Gradio
|
| 234 |
# ==============================================================================
|
| 235 |
|
| 236 |
-
# البحث عن النماذج المتاحة عند بدء تشغيل الواجهة
|
| 237 |
available_models = find_available_models()
|
| 238 |
|
| 239 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 240 |
gr.Markdown("# 🚗 محاكاة القيادة الذاتية باستخدام Interfuser")
|
| 241 |
|
|
|
|
|
|
|
|
|
|
| 242 |
with gr.Row():
|
| 243 |
model_selector = gr.Dropdown(
|
| 244 |
label="اختر النموذج من مجلد 'model/weights'",
|
|
@@ -249,14 +219,15 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 249 |
|
| 250 |
# التحميل الأولي والتحميل عند التغيير
|
| 251 |
if available_models:
|
| 252 |
-
demo.load(fn=load_model, inputs=model_selector, outputs=status_textbox)
|
| 253 |
-
|
|
|
|
| 254 |
|
| 255 |
gr.Markdown("---")
|
| 256 |
|
| 257 |
with gr.Tabs():
|
| 258 |
with gr.TabItem("نقطة نهاية API (إطار واحد)", id=1):
|
| 259 |
-
gr.Markdown("### اختبار النموذج بإدخال مباشر
|
| 260 |
|
| 261 |
with gr.Row():
|
| 262 |
with gr.Column(scale=1):
|
|
@@ -278,6 +249,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 278 |
api_run_button.click(
|
| 279 |
fn=run_single_frame,
|
| 280 |
inputs=[
|
|
|
|
| 281 |
api_rgb_image_path, api_rgb_left_image_path, api_rgb_right_image_path,
|
| 282 |
api_rgb_center_image_path, api_lidar_image_path,
|
| 283 |
api_measurements_path, api_target_point_list
|
|
@@ -293,4 +265,5 @@ if __name__ == "__main__":
|
|
| 293 |
if not available_models:
|
| 294 |
print("تحذير: لم يتم العثور على أي ملفات نماذج (.pth) في مجلد 'model/weights'.")
|
| 295 |
print("سيتم تشغيل الواجهة ولكن لن تتمكن من تحميل أي نموذج.")
|
|
|
|
| 296 |
demo.queue().launch(debug=True)
|
|
|
|
| 11 |
import math
|
| 12 |
|
| 13 |
# --- استيراد من الملفات المنظمة في مشروعك ---
|
| 14 |
+
from model.architecture import build_interfuser_model
|
|
|
|
|
|
|
| 15 |
from logic import (
|
| 16 |
transform, lidar_transform, InterfuserController, ControllerConfig,
|
| 17 |
Tracker, DisplayInterface, render, render_waypoints, render_self_car,
|
|
|
|
| 21 |
# ==============================================================================
|
| 22 |
# 1. إعدادات ومسارات النماذج
|
| 23 |
# ==============================================================================
|
| 24 |
+
WEIGHTS_DIR = "model/weights"
|
| 25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# قاموس لتحديد الإعدادات الخاصة بكل نموذج.
|
|
|
|
|
|
|
| 28 |
MODELS_SPECIFIC_CONFIGS = {
|
| 29 |
"interfuser_baseline": {
|
| 30 |
"rgb_backbone_name": "r50",
|
| 31 |
"embed_dim": 256,
|
| 32 |
+
"direct_concat": True,
|
| 33 |
},
|
| 34 |
"interfuser_lightweight": {
|
| 35 |
"rgb_backbone_name": "r26",
|
| 36 |
"embed_dim": 128,
|
| 37 |
"enc_depth": 4,
|
| 38 |
"dec_depth": 4,
|
| 39 |
+
"direct_concat": True,
|
| 40 |
}
|
|
|
|
|
|
|
| 41 |
}
|
| 42 |
|
| 43 |
def find_available_models():
|
|
|
|
| 47 |
if not os.path.isdir(WEIGHTS_DIR):
|
| 48 |
print(f"تحذير: مجلد الأوزان '{WEIGHTS_DIR}' غير موجود.")
|
| 49 |
return []
|
| 50 |
+
return [f.replace(".pth", "") for f in os.listdir(WEIGHTS_DIR) if f.endswith(".pth")]
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# ==============================================================================
|
| 53 |
+
# 2. دالة تحميل النموذج (لا تستخدم متغيرات عامة)
|
| 54 |
# ==============================================================================
|
| 55 |
def load_model(model_name: str):
|
| 56 |
"""
|
| 57 |
+
تبني وتحمل النموذج المختار وتُرجعه ككائن.
|
| 58 |
"""
|
| 59 |
+
if not model_name or "لم يتم" in model_name:
|
| 60 |
+
return None, "الرجاء اختيار نموذج صالح."
|
|
|
|
|
|
|
| 61 |
|
| 62 |
weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth")
|
| 63 |
+
print(f"Building model: '{model_name}'")
|
| 64 |
|
|
|
|
| 65 |
model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {})
|
|
|
|
|
|
|
| 66 |
model = build_interfuser_model(model_config)
|
| 67 |
|
| 68 |
if not os.path.exists(weights_path):
|
| 69 |
+
gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود. النموذج سيعمل بأوزان عشوائية.")
|
| 70 |
else:
|
| 71 |
try:
|
|
|
|
| 72 |
state_dic = torch.load(weights_path, map_location=device, weights_only=True)
|
| 73 |
model.load_state_dict(state_dic)
|
| 74 |
print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.")
|
| 75 |
except Exception as e:
|
| 76 |
+
gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.")
|
| 77 |
|
| 78 |
model.to(device)
|
| 79 |
model.eval()
|
| 80 |
|
| 81 |
+
# إرجاع كائن النموذج نفسه + ر��الة للمستخدم
|
| 82 |
+
return model, f"تم تحميل نموذج: {model_name}"
|
|
|
|
| 83 |
|
| 84 |
# ==============================================================================
|
| 85 |
+
# 3. دالة التشغيل الرئيسية (تستقبل النموذج كمدخل)
|
| 86 |
# ==============================================================================
|
| 87 |
def run_single_frame(
|
| 88 |
+
model_from_state, # <-- مدخل جديد من gr.State
|
| 89 |
rgb_image_path,
|
| 90 |
rgb_left_image_path,
|
| 91 |
rgb_right_image_path,
|
|
|
|
| 94 |
measurements_path,
|
| 95 |
target_point_list
|
| 96 |
):
|
| 97 |
+
# لم نعد نستخدم المتغير العام، بل نستخدم النموذج الذي تم تمريره
|
| 98 |
+
if model_from_state is None:
|
| 99 |
+
raise gr.Error("الرجاء اختيار وتحميل نموذج صالح أولاً من القائمة المنسدلة.")
|
|
|
|
| 100 |
|
| 101 |
try:
|
| 102 |
# --- 1. قراءة ومعالجة المدخلات ---
|
| 103 |
+
if not (rgb_image_path and measurements_path):
|
| 104 |
+
raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.")
|
| 105 |
|
| 106 |
rgb_image_pil = Image.open(rgb_image_path.name).convert("RGB")
|
| 107 |
+
# بقية معالجة المدخلات
|
| 108 |
rgb_left_pil = Image.open(rgb_left_image_path.name).convert("RGB") if rgb_left_image_path else rgb_image_pil
|
| 109 |
rgb_right_pil = Image.open(rgb_right_image_path.name).convert("RGB") if rgb_right_image_path else rgb_image_pil
|
| 110 |
rgb_center_pil = Image.open(rgb_center_image_path.name).convert("RGB") if rgb_center_image_path else rgb_image_pil
|
| 111 |
|
|
|
|
| 112 |
front_tensor = transform(rgb_image_pil).unsqueeze(0).to(device)
|
| 113 |
left_tensor = transform(rgb_left_pil).unsqueeze(0).to(device)
|
| 114 |
right_tensor = transform(rgb_right_pil).unsqueeze(0).to(device)
|
| 115 |
center_tensor = transform(rgb_center_pil).unsqueeze(0).to(device)
|
| 116 |
+
|
| 117 |
if lidar_image_path:
|
| 118 |
lidar_array = np.load(lidar_image_path.name)
|
| 119 |
+
if lidar_array.max() > 0: lidar_array = (lidar_array / lidar_array.max()) * 255.0
|
|
|
|
| 120 |
lidar_pil = Image.fromarray(lidar_array.astype(np.uint8)).convert('RGB')
|
| 121 |
else:
|
| 122 |
lidar_pil = Image.fromarray(np.zeros((112, 112, 3), dtype=np.uint8))
|
| 123 |
lidar_tensor = lidar_transform(lidar_pil).unsqueeze(0).to(device)
|
| 124 |
|
| 125 |
+
with open(measurements_path.name, 'r') as f: m_dict = json.load(f)
|
|
|
|
| 126 |
|
|
|
|
| 127 |
measurements_tensor = torch.tensor([[
|
| 128 |
m_dict.get('x', 0.0), m_dict.get('y', 0.0), m_dict.get('theta', 0.0),
|
| 129 |
m_dict.get('speed', 5.0), m_dict.get('steer', 0.0), m_dict.get('throttle', 0.0),
|
|
|
|
| 133 |
|
| 134 |
target_point_tensor = torch.tensor([target_point_list], dtype=torch.float32).to(device)
|
| 135 |
|
|
|
|
| 136 |
inputs = {
|
| 137 |
+
'rgb': front_tensor, 'rgb_left': left_tensor, 'rgb_right': right_tensor,
|
| 138 |
+
'rgb_center': center_tensor, 'lidar': lidar_tensor,
|
| 139 |
+
'measurements': measurements_tensor, 'target_point': target_point_tensor
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
}
|
| 141 |
|
| 142 |
# --- 2. تشغيل النموذج ---
|
| 143 |
with torch.no_grad():
|
| 144 |
+
outputs = model_from_state(inputs)
|
| 145 |
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs
|
| 146 |
|
| 147 |
# --- 3. المعالجة اللاحقة والتصوّر ---
|
|
|
|
| 156 |
|
| 157 |
controller = InterfuserController(ControllerConfig())
|
| 158 |
steer, throttle, brake, metadata = controller.run_step(
|
| 159 |
+
speed, waypoints_np, is_junction.sigmoid()[0, 1].item(),
|
| 160 |
+
traffic_light.sigmoid()[0, 0].item(), stop_sign.sigmoid()[0, 1].item(), updated_traffic
|
|
|
|
| 161 |
)
|
| 162 |
|
|
|
|
| 163 |
map_t0, counts_t0 = render(updated_traffic, t=0)
|
| 164 |
map_t1, counts_t1 = render(updated_traffic, t=T1_FUTURE_TIME)
|
| 165 |
map_t2, counts_t2 = render(updated_traffic, t=T2_FUTURE_TIME)
|
| 166 |
|
| 167 |
wp_map = render_waypoints(waypoints_np)
|
| 168 |
+
self_car_map = render_self_car(np.array([0,0]), [math.cos(0), math.sin(0)], [4.0, 2.0])
|
| 169 |
|
| 170 |
map_t0 = cv2.add(cv2.add(map_t0, wp_map), self_car_map)
|
| 171 |
map_t0 = cv2.resize(map_t0, (400, 400))
|
|
|
|
| 173 |
map_t2 = cv2.add(ensure_rgb(map_t2), ensure_rgb(self_car_map)); map_t2 = cv2.resize(map_t2, (200, 200))
|
| 174 |
|
| 175 |
display = DisplayInterface()
|
| 176 |
+
light_state, stop_sign_state = "Red" if traffic_light.sigmoid()[0,0].item() > 0.5 else "Green", "Yes" if stop_sign.sigmoid()[0,1].item() > 0.5 else "No"
|
|
|
|
| 177 |
|
| 178 |
interface_data = {
|
| 179 |
'camera_view': np.array(rgb_image_pil), 'map_t0': map_t0, 'map_t1': map_t1, 'map_t2': map_t2,
|
| 180 |
+
'text_info': { 'Control': f"S:{steer:.2f} T:{throttle:.2f} B:{int(brake)}", 'Light': f"L: {light_state}", 'Stop': f"St: {stop_sign_state}" },
|
|
|
|
|
|
|
|
|
|
| 181 |
'object_counts': {'t0': counts_t0, 't1': counts_t1, 't2': counts_t2}
|
| 182 |
}
|
| 183 |
|
|
|
|
| 201 |
# 4. تعريف واجهة Gradio
|
| 202 |
# ==============================================================================
|
| 203 |
|
|
|
|
| 204 |
available_models = find_available_models()
|
| 205 |
|
| 206 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 207 |
gr.Markdown("# 🚗 محاكاة القيادة الذاتية باستخدام Interfuser")
|
| 208 |
|
| 209 |
+
# مكون الحالة الخفي لتخزين النموذج الخاص بكل جلسة
|
| 210 |
+
model_state = gr.State(value=None)
|
| 211 |
+
|
| 212 |
with gr.Row():
|
| 213 |
model_selector = gr.Dropdown(
|
| 214 |
label="اختر النموذج من مجلد 'model/weights'",
|
|
|
|
| 219 |
|
| 220 |
# التحميل الأولي والتحميل عند التغيير
|
| 221 |
if available_models:
|
| 222 |
+
demo.load(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox])
|
| 223 |
+
|
| 224 |
+
model_selector.change(fn=load_model, inputs=model_selector, outputs=[model_state, status_textbox])
|
| 225 |
|
| 226 |
gr.Markdown("---")
|
| 227 |
|
| 228 |
with gr.Tabs():
|
| 229 |
with gr.TabItem("نقطة نهاية API (إطار واحد)", id=1):
|
| 230 |
+
gr.Markdown("### اختبار النموذج بإدخال مباشر")
|
| 231 |
|
| 232 |
with gr.Row():
|
| 233 |
with gr.Column(scale=1):
|
|
|
|
| 249 |
api_run_button.click(
|
| 250 |
fn=run_single_frame,
|
| 251 |
inputs=[
|
| 252 |
+
model_state, # تمرير الحالة كأول مدخل
|
| 253 |
api_rgb_image_path, api_rgb_left_image_path, api_rgb_right_image_path,
|
| 254 |
api_rgb_center_image_path, api_lidar_image_path,
|
| 255 |
api_measurements_path, api_target_point_list
|
|
|
|
| 265 |
if not available_models:
|
| 266 |
print("تحذير: لم يتم العثور على أي ملفات نماذج (.pth) في مجلد 'model/weights'.")
|
| 267 |
print("سيتم تشغيل الواجهة ولكن لن تتمكن من تحميل أي نموذج.")
|
| 268 |
+
# .queue() ضروري للتعامل مع الجلسات المتعددة بشكل صحيح
|
| 269 |
demo.queue().launch(debug=True)
|