Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| from gtts import gTTS | |
| import os | |
| # Function: Image to Text | |
| def img2text(url): | |
| image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
| text = image_to_text_model(url)[0]["generated_text"] | |
| return text | |
| # Function: Text to Story (Placeholder) | |
| def text2story(text): | |
| story_text = text # Placeholder for now | |
| return story_text | |
| # Function: Text to Audio | |
| def text2audio(story_text): | |
| # Convert text to audio using gTTS | |
| tts = gTTS(story_text, lang="en") | |
| audio_file = "story_audio.wav" | |
| tts.save(audio_file) | |
| return audio_file | |
| # Streamlit App | |
| st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") | |
| st.header("Turn Your Image to Audio Story") | |
| uploaded_file = st.file_uploader("Select an Image...") | |
| if uploaded_file is not None: | |
| print(uploaded_file) | |
| bytes_data = uploaded_file.getvalue() | |
| with open(uploaded_file.name, "wb") as file: | |
| file.write(bytes_data) | |
| st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
| # Stage 1: Image to Text | |
| st.text('Processing img2text...') | |
| scenario = img2text(uploaded_file.name) | |
| st.write(scenario) | |
| # Stage 2: Text to Story | |
| st.text('Generating a story...') | |
| story = text2story(scenario) | |
| st.write(story) | |
| # Stage 3: Story to Audio | |
| st.text('Generating audio data...') | |
| audio_file = text2audio(story) | |
| # Play button | |
| if st.button("Play Audio"): | |
| st.audio(audio_file, format="audio/wav") |