File size: 22,806 Bytes
0ca8f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import streamlit as st
loader_placeholder = st.empty()
loader_placeholder.markdown("""

<div style="

    display:flex;

    justify-content:center;

    align-items:center;

    height:50vh;

    font-size:40px;

    font-weight:bold;

    color:#00b4d8;

    animation: flash 1s infinite;

">

Loading necessary libraries...

</div>



<style>

@keyframes flash {

  0% { opacity: 0.2; }

  50% { opacity: 1; }

  100% { opacity: 0.2; }

}

</style>

""", unsafe_allow_html=True)
import numpy as np
from st_click_detector import click_detector
import cv2
from PIL import Image
import tensorflow as tf
from tensorflow.keras.models import load_model
from tf_keras_vis.gradcam_plus_plus import GradcamPlusPlus
from tf_keras_vis.utils.model_modifiers import ReplaceToLinear
from tf_keras_vis.utils.scores import CategoricalScore
import matplotlib.pyplot as plt
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
from peft import PeftModel
import base64
import os
import io
import traceback
from tensorflow.keras.layers import (
    Layer, Conv2D, Dense,
    GlobalAveragePooling2D, GlobalMaxPooling2D,
    Reshape, Multiply, Add, Activation, Concatenate
)
from pathlib import Path

loader_placeholder.empty()
#--------------------------------------------------------------------------------------------------
# unnecessary for this app, but needed for CNN model to load, so its necessary actually 
#--------------------------------------------------------------------------------------------------
@tf.keras.utils.register_keras_serializable(package="Custom", name="F1Score")
class F1Score(tf.keras.metrics.Metric):
    def __init__(self, name='f1_score', **kwargs):
        super().__init__(name=name, **kwargs)
        self.precision = tf.keras.metrics.Precision()  
        self.recall = tf.keras.metrics.Recall() 

    def update_state(self, y_true, y_pred, sample_weight=None):
        self.precision.update_state(y_true, y_pred, sample_weight)
        self.recall.update_state(y_true, y_pred, sample_weight)

    def result(self):
        p = self.precision.result()  
        r = self.recall.result()
        return 2 * (p * r) / (p + r + tf.keras.backend.epsilon())  

    def reset_states(self):
        self.precision.reset_states()
        self.recall.reset_states() 

@tf.keras.utils.register_keras_serializable(package="Custom", name="ChannelAttention")
class ChannelAttention(Layer):
    def __init__(self, reduction=16, **kwargs):
        super(ChannelAttention, self).__init__(**kwargs)
        self.reduction = reduction

    def build(self, input_shape):
        channel = input_shape[-1] 
        self.shared_dense_one = Dense(channel // self.reduction, activation='relu', kernel_initializer='he_normal', use_bias=True)
        self.shared_dense_two = Dense(channel, kernel_initializer='he_normal', use_bias=True)

    def call(self, inputs):
        avg_pool = GlobalAveragePooling2D()(inputs)
        max_pool = GlobalMaxPooling2D()(inputs)

        avg_pool = self.shared_dense_one(avg_pool)
        avg_pool = self.shared_dense_two(avg_pool)

        max_pool = self.shared_dense_one(max_pool)
        max_pool = self.shared_dense_two(max_pool)

        attention = Add()([avg_pool, max_pool])
        attention = Activation('sigmoid')(attention)

        attention = Reshape((1, 1, -1))(attention)
        return Multiply()([inputs, attention])

@tf.keras.utils.register_keras_serializable(package="Custom", name="SpatialAttention")
class SpatialAttention(Layer):
    def __init__(self, **kwargs):
        super(SpatialAttention, self).__init__(**kwargs)
        self.conv2d = Conv2D(filters=1, kernel_size=7, strides=1, padding='same', activation='sigmoid')
    def call(self, inputs):
        avg_pool = tf.reduce_mean(inputs, axis=-1, keepdims=True)
        max_pool = tf.reduce_max(inputs, axis=-1, keepdims=True)
        concat = Concatenate(axis=-1)([avg_pool, max_pool])
        attention = self.conv2d(concat)
        return Multiply()([inputs, attention])
    
def cbam_block(inputs, reduction=16):
    x = ChannelAttention(reduction)(inputs)
    x = SpatialAttention()(x)
    return x
#----------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------

# -------------------------
# Helpers & small utilities
# -------------------------
def bytes_from_path(path):
    with open(path, "rb") as f:
        return f.read()

def image_to_data_uri(path: str, max_width=224, jpeg_quality=70):
    p = Path(path)
    if not p.exists():
        return None
    img = Image.open(p).convert("RGB")
    # resize maintaining aspect ratio
    if img.width > max_width:
        new_h = int(max_width * img.height / img.width)
        img = img.resize((max_width, new_h), Image.BILINEAR)
    buf = io.BytesIO()
    img.save(buf, format="JPEG", quality=jpeg_quality, optimize=True)
    b = buf.getvalue()
    data64 = base64.b64encode(b).decode("utf-8")
    return f"data:image/jpeg;base64,{data64}"


labels = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
full_names = {
    'akiec': 'Actinic keratoses',
    'bcc': 'Basal cell carcinoma',
    'bkl': 'Benign keratosis-like lesions',
    'df': 'Dermatofibroma',
    'mel': 'Melanoma',
    'nv': 'Melanocytic nevi',
    'vasc': 'Vascular lesions'
}

def preprocess_image(image):
    if image.dtype != np.uint8:
        image = cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
    lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
    clahe = cv2.createCLAHE(clipLimit=0.01, tileGridSize=(8, 8))
    lab[:, :, 0] = clahe.apply(lab[:, :, 0])
    image_clahe = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
    image_clahe = image_clahe.astype(np.float32)
    image_clahe = (image_clahe - np.min(image_clahe)) / (np.ptp(image_clahe) + 1e-8)
    return image_clahe

@st.cache_resource(show_spinner=False)
def load_cnn_model(model_path="Proposed CBAM-Xception-DermNet.keras"):
    if 'cnn_model' in st.session_state:
        return st.session_state.cnn_model
    try:
        model = load_model(model_path)
        st.session_state.cnn_model = model
        return model
    except Exception as e:
        st.error(f"Failed to load CNN model from '{model_path}': {e}")
        st.exception(traceback.format_exc())
        raise

@st.cache_resource(show_spinner=False)
def load_vlm_model():
    if st.session_state.get("vlm_loaded", False):
        return {
            "model": st.session_state.vlm_model,
            "processor": st.session_state.processor,
            "device": st.session_state.device,
            "dtype": st.session_state.dtype
        }

    USE_4BIT = True              
    HF_MODEL_ID = "google/medgemma-4b-it"  # Hugging Face repo ID
    LORA_OUTPUT_DIR = "./medgemma_lora_adapter" #local lora saved dir
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    hf_token = os.getenv("HF_TOKEN") #NOTE: hiding mandatory (reminder)

    # Determine dtype
    capability = torch.cuda.get_device_capability(0)[0] if torch.cuda.is_available() else 0
    dtype = torch.bfloat16 if torch.cuda.is_available() and capability >= 8 else torch.float32

    # 4-bit quantization config
    bnb_config = None
    if USE_4BIT:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=dtype,
        )

    # Load processor from LoRA adapter folder (it contains tokenizer, etc.)
    try:
        processor = AutoProcessor.from_pretrained(
            LORA_OUTPUT_DIR,
            trust_remote_code=True
        )
        processor.tokenizer.padding_side = "right"
    except Exception as e:
        st.error(f"Failed to load processor from '{LORA_OUTPUT_DIR}': {e}")
        st.exception(traceback.format_exc())
        raise

    # Load base model from Hugging Face hub
    try:
        base_model = AutoModelForImageTextToText.from_pretrained(
            HF_MODEL_ID,
            quantization_config=bnb_config if USE_4BIT else None,
            dtype=dtype,
            device_map="auto",
            trust_remote_code=True,
            use_auth_token=hf_token  # only needed if repo is private
        )
    except Exception as e:
        st.error(f"Failed to load base model from Hugging Face hub: {e}")
        st.exception(traceback.format_exc())
        raise

    # Attach LoRA adapter
    try:
        model = PeftModel.from_pretrained(
            base_model,
            LORA_OUTPUT_DIR,
            device_map="auto"
        )
    except Exception as e:
        st.error(f"Failed to attach LoRA adapter: {e}")
        st.exception(traceback.format_exc())
        raise
    model.eval()
    try:
        model.to(DEVICE)
    except Exception:
        # ignore if model already on correct device
        pass
    # Cache into session_state
    st.session_state.vlm_model = model
    st.session_state.processor = processor
    st.session_state.device = DEVICE
    st.session_state.dtype = dtype
    st.session_state.vlm_loaded = True

    return {"model": model, "processor": processor, "device": DEVICE, "dtype": dtype}


def generate_vlm_response(processor, vlm_model, device, gradcam_image: Image.Image, pred_label,

                          max_new_tokens=128):
    try:
        prompt_template = (
            "You are an AI assistant specialized in model interpretability. "
            "I am providing:\n- CNN model Grad-CAM++ heatmap image\n- Model predicted class: {predicted_class}\n\n"
            "Based on the Grad-CAM++ heatmap, write a clear and concise 20–30 word explanation "
            "of which features the model focused on and why. Output only the explanation (no headings)."
        )
        user_prompt = prompt_template.format(predicted_class=pred_label)

        chat = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": user_prompt}
                ],
            }
        ]
        formatted_prompt = processor.apply_chat_template(chat, add_generation_prompt=True, tokenize=False)
        inputs = processor(text=formatted_prompt, images=gradcam_image, return_tensors="pt", padding=True)

        try:
            inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
        except Exception:
            for k, v in inputs.items():
                if isinstance(v, torch.Tensor):
                    inputs[k] = v.to(device)

        if hasattr(inputs, "pixel_values") or ("pixel_values" in inputs):
            try:
                inputs["pixel_values"] = inputs["pixel_values"].to(dtype=vlm_model.dtype)
            except Exception:
                try:
                    inputs["pixel_values"] = inputs["pixel_values"].to(dtype=torch.float16)
                except Exception:
                    pass

        with torch.inference_mode():
            output_ids = vlm_model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                do_sample=False,
                pad_token_id=processor.tokenizer.eos_token_id,
            )

        # Some generate wrappers return object with .sequences
        if hasattr(output_ids, "sequences"):
            seqs = output_ids.sequences
        else:
            seqs = output_ids

        input_len = inputs["input_ids"].shape[-1]
        response = processor.decode(seqs[0, input_len:], skip_special_tokens=True)
        return response.strip()
    
    except Exception as e:
        st.error(f"VLM generation failed: {e}")
        st.exception(traceback.format_exc())
        return None

def classify_and_gradcam(image_bytes):
    pil_img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
    preprocessed = preprocess_image(np.array(pil_img))
    input_tensor = np.expand_dims(preprocessed, axis=0)
    with st.spinner("Loading Classifier Model..."):
        cnn = load_cnn_model("Proposed CBAM-Xception-DermNet.keras")
    with st.spinner("Classifying..."):
        preds = cnn.predict(input_tensor)[0]
        pred_idx = int(np.argmax(preds))
        pred_label = labels[pred_idx]
        conf = float(preds[pred_idx])
    with st.spinner("Generating Attention Map..."):
        target_layer = "block14_sepconv2"
        score = CategoricalScore([pred_idx])
        gradcam_vis = GradcamPlusPlus(cnn, model_modifier=ReplaceToLinear(), clone=True)
        cam = gradcam_vis(score, input_tensor, penultimate_layer=target_layer)[0]
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
        heatmap = plt.cm.jet(cam)[..., :3]
        overlay = 0.25 * heatmap + 0.75 * preprocessed
        overlay = np.uint8(255 * np.clip(overlay, 0, 1))
        overlay_pil = Image.fromarray(overlay)

    return pred_label, conf, overlay_pil

# -------------------------
# Main display config & styling 
# -------------------------
st.set_page_config(page_title="Skin Cancer Classifier", layout="wide", initial_sidebar_state="expanded")

st.markdown("""

<style>

.stApp { background: linear-gradient(180deg, #f5f7fb 0%, #ffffff 100%); }

.card { background: white; border-radius: 12px; padding: 14px; box-shadow: 0 8px 22px rgba(14,30,37,0.06); }

.header-title { font-size:34px; font-weight:700; margin-bottom:4px; }

.header-sub { color:#6b7280; margin-bottom:6px; }

.small { font-size:13px; color:#6b7280; }

</style>

""", unsafe_allow_html=True)

with st.sidebar:
    st.header("Important Notice")
    st.markdown("""

    - This app is a prototype, not for clinical use.

    - Do not rely on classifications or explanations for medical decisions.

    - This apps model is fine tuned on only one small dataset.

    - It might not capture your original disease.

    - Always consult a qualified healthcare professional.

    - Results may not be accurate; use at your own risk.

    - Again, this is just a prototype!

    """, unsafe_allow_html=True)
    
    st.markdown("---")
    if st.button("Clear Models Cache"):
        for k in ["cnn_model", "vlm_model", "processor", "device", "dtype", "vlm_loaded"]:
            if k in st.session_state:
                del st.session_state[k]
        st.success("Model cache cleared. Models will reload on next use.")


st.markdown("<div class='header-title'>Skin Cancer Image Classifier</div>", unsafe_allow_html=True)
st.markdown("<div class='header-sub'>Local CNN inference β€’ Model Attention (Grad-CAM++) visualizations β€’ optional VLM explanations</div>", unsafe_allow_html=True)

uploaded_file = st.file_uploader("Upload a skin lesion image", type=["jpg","jpeg","png"], key="uploaded_file" )

# --- Handle automatic reset if file is cleared ---
#if uploaded_file is None and "selected_image" in st.session_state:
#    # Only clear if user manually removed an uploaded file
#    if not st.session_state.get("example_selected", False):
#        for key in ["selected_image", "vlm_response"]:
#            st.session_state.pop(key, None)
#        st.rerun()

if uploaded_file is not None:
    st.session_state.selected_image = uploaded_file.read()
    st.session_state.example_selected = False  
    st.session_state["vlm_response"] = None  

if uploaded_file is None and not st.session_state.get("example_selected", False):
    keys_to_clear = ["vlm_response", "pred_label", "conf", "overlay_pil", "last_image_bytes", "selected_image"]
    for k in keys_to_clear:
        if k in st.session_state:
            del st.session_state[k]

# Main layout: image area and visualization
original_image_col, attention_column = st.columns([2,2])

with original_image_col:
    st.markdown("<div class='card'>", unsafe_allow_html=True)
    st.subheader("Selected Image")
    if 'selected_image' in st.session_state:
        pil_img = Image.open(io.BytesIO(st.session_state.selected_image)).convert("RGB")
        st.image(pil_img, width=360, caption="Selected image", output_format="auto")
    else:
        st.info("No image selected. Upload or click an example below.")
    st.markdown("</div>", unsafe_allow_html=True)

# full column
if 'selected_image' in st.session_state:
    img_bytes = st.session_state.selected_image
    if st.session_state.get("last_image_bytes") != img_bytes:
        pred_label, conf, overlay_pil = classify_and_gradcam(img_bytes)
        st.session_state["pred_label"] = pred_label
        st.session_state["conf"] = conf
        st.session_state["overlay_pil"] = overlay_pil
        st.session_state["last_image_bytes"] = img_bytes
        try:
            with st.spinner("Loading VLM Model. Please be patient..."):
                try:
                    vlm_info = load_vlm_model()
                except Exception as e:
                    st.error("VLM load failed. See logs above.")
                    vlm_info = None

            if vlm_info is not None:
                try:
                    img_for_vlm = overlay_pil.convert("RGB").resize((224, 224), Image.BILINEAR)
                except Exception:
                    st.warning("Overlay image not available for VLM input; using original image.")
                    img_for_vlm = pil_img.convert("RGB").resize((224, 224), Image.BILINEAR)

                with st.spinner("Generating Explanation...."):
                    response = generate_vlm_response(
                        vlm_info["processor"],
                        vlm_info["model"],
                        vlm_info["device"],
                        img_for_vlm,
                        pred_label,
                        max_new_tokens=128
                    )
                #response = "Debugging VLM response." # For debugging
                if response is None:
                    st.error("VLM did not return a response.")
                else:
                    st.session_state["vlm_response"] = response
        except Exception as e:
            st.error(f"Error in VLM generation flow: {e}")
            st.exception(traceback.format_exc())


with attention_column:
    st.markdown("<div class='card'>", unsafe_allow_html=True)
    st.subheader("Model Attention Visualization")
    if 'selected_image' in st.session_state:
        st.image(st.session_state["overlay_pil"], caption="Model Attention Overlay", width=360, output_format="auto")
    else:
        st.info("Model Attention will appear here after selecting an image and running classification.")
    st.markdown("</div>", unsafe_allow_html=True)


# Metrics placeholder
c1, c2 = st.columns([3,1])
if st.session_state.get("selected_image") and st.session_state.get("pred_label"):
    c1.metric("Predicted", full_names[st.session_state["pred_label"]])
    c2.metric("Confidence", f"{st.session_state['conf']:.2f}")
else:
    c1.metric("Predicted", "β€”")
    c2.metric("Confidence", "β€”")

# VLM Response placeholder
st.subheader("Generated Explanation")
if st.session_state.get("vlm_response"):
    st.info(st.session_state["vlm_response"])
else:
    st.info("VLM explanation will appear here after selecting an image and running classification.")

example_paths = [
    "images/ISIC_0025314.jpg",
    "images/ISIC_0025586.jpg",
    "images/ISIC_0025680.jpg",
    "images/ISIC_0026163.jpg"
]

# Container div for toggle + gallery
st.markdown("""

<div style='background-color:#f9fafb; padding:15px; border-radius:12px; margin-bottom:20px;'>

""", unsafe_allow_html=True)

toggle = st.toggle("Show Example Images", value=False)

if toggle:
    # Toggle ON β†’ show gallery
    st.markdown("<div class='header-sub'>Click on any image to analyze it instantly</div>", unsafe_allow_html=True)
    html = """

    <style>

    .example-img {

        border-radius:10px;

        width:100%;

        display:block;

        box-shadow: 0 4px 12px rgba(14,30,37,0.06);

        transition: transform .12s ease, box-shadow .12s ease;

        cursor: pointer;

    }

    .example-img:hover {

        transform: scale(1.03);

        box-shadow: 0 14px 30px rgba(14,30,37,0.10);

    }

    .gallery-row { display:flex; gap:20px; }

    .gallery-item { flex:1; }

    </style>

    <div class="gallery-row">

    """

    for i, path in enumerate(example_paths):
        src = image_to_data_uri(path, max_width=480, jpeg_quality=70)
        if src is None:
            placeholder_svg = """

            <svg xmlns='http://www.w3.org/2000/svg' width='400' height='300'>

                <rect width='100%' height='100%' fill='#f3f4f6'/>

                <text x='50%' y='50%' dominant-baseline='middle' text-anchor='middle' 

                    fill='#9ca3af' font-size='20'>missing</text>

            </svg>

            """
            src = "data:image/svg+xml;base64," + base64.b64encode(placeholder_svg.encode()).decode()

        html += f"""

        <a href='#' id='img_{i}' class='gallery-item'>

            <img src='{src}' class='example-img' />

        </a>

        """

    html += "</div>"

    if "example_click_key" not in st.session_state:
        st.session_state.example_click_key = 0

    clicked = click_detector(html, key=f"clicking_examples_{st.session_state.example_click_key}")

    if clicked:
        if uploaded_file is not None:
            st.warning("Please remove the uploaded file by clickng cross in the uploaded file name")
        else:    
            idx = int(clicked.split("_")[1])
            selected_path = example_paths[idx]
            img_bytes = open(selected_path, "rb").read()
            if st.session_state.get("last_image_bytes") != img_bytes:
                st.session_state.selected_image = img_bytes
                st.session_state.example_selected = True
                st.session_state["vlm_response"] = None
                st.session_state.example_click_key += 1
                try:
                    st.toast(f"βœ… Selected image: {selected_path}", icon="πŸ“Έ")
                except Exception:
                    st.success(f"Selected image: {selected_path}")
            st.rerun()
st.markdown("</div>", unsafe_allow_html=True)

st.markdown("""

<div style='margin-top:12px; color:#6b7280; font-size:13px;'>

Β© 2025 Faysal Ahmmed, Ajmy Alaly, Samanta Mehnaj, Asef Rahman, F.M. Mridha. All rights reserved.

</div>

""", unsafe_allow_html=True)