File size: 9,705 Bytes
5ab87e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# single_question_recall.py
from __future__ import annotations
import re
import os
from typing import Any, Dict, Optional
from re_call import ReCall
from transformers import AutoTokenizer
import re
from typing import Optional, Any, Dict, Tuple, List
def _extract_answer_boxed(s: str) -> Optional[str]:
"""
Return the content of the *last* \\boxed{...} or \\fbox{...} in `s`,
with proper matching of nested braces. Escaped braces (\\{, \\}) are ignored
for counting. If no balanced block is found, returns None.
"""
def _iter_box_like_spans(text: str):
# Find openings for \boxed{ and \fbox{
openings: List[Tuple[str, int, int]] = []
for m in re.finditer(r'\\boxed\s*\{', text):
openings.append(("boxed", m.start(), m.end()))
for m in re.finditer(r'\\fbox\s*\{', text):
openings.append(("fbox", m.start(), m.end()))
openings.sort(key=lambda x: x[1])
# For each opening, scan forward to find its matching closing brace
for kind, start, open_end in openings:
depth = 1
i = open_end
n = len(text)
while i < n:
ch = text[i]
# Skip escaped characters: backslash escapes the next char (including { or })
if ch == '\\' and i + 1 < n:
i += 2
continue
if ch == '{':
depth += 1
elif ch == '}':
depth -= 1
if depth == 0:
# content is text[open_end:i]
yield (kind, start, open_end, i)
break
i += 1
last_content: Optional[str] = None
for _, _start, open_end, close_idx in _iter_box_like_spans(s):
last_content = s[open_end:close_idx] # keep the *last* one
return last_content.strip() if last_content is not None else None
def _extract_answer_tagged(s: str) -> Optional[str]:
answer_tag_re = re.compile(r"<answer>(.*?)</answer>", re.S)
m = answer_tag_re.findall(s)
return m[-1].strip() if m else None
def _parse_answer_from_transcript(transcript: str) -> str:
"""
Prefer balanced \\boxed{...}/\\fbox{...} content, then <answer>...</answer>,
else fall back to the last 200 chars.
"""
return (
_extract_answer_boxed(transcript)
or _extract_answer_tagged(transcript)
# or transcript[-200:].strip()
)
# --- main API: recall only ---
def answer_question_recall(
question: str,
*,
model_url: Optional[str] = None, # your thinker endpoint (if recall uses one)
executor_url: Optional[str] = None,
tokenizer_dir: str = "./tokenizer-info",
temperature: float = 0.6,
max_new_tokens: int = 40960,
top_p: float = 0.95,
search_env: str = "from search_api import search_urls, open_url, search_and_parse_query, query_url",
func_schemas = [
{
"name": "search_urls",
"description": "Google search and return links to web-pages with a brief snippet given a text query",
"parameters": {
"type": "object",
"properties": {"query": {"type": "string"}, "top_k": {"type": "integer", "default": 10}},
"required": ["query"],
},
},
{
"name": "query_url",
"description": "Visit webpage and return evidence based retrival for the provided goal",
"parameters": {
"type": "object",
"properties": {
"url": {"type": "string", "description": "The URL of the webpage to visit. Must be a single URL"},
"goal": {"type": "string", "description": "The specific information goal for visiting webpage"},
},
"required": ["url", "goal"],
},
},
],
deepseek_name: str = "deepseek-ai/DeepSeek-R1",
old_prompt: Optional[str] = None,
deepresearch_on: bool = True,
summary_llm: str = "gpt-4.1-mini",
):
# ) -> Dict[str, Any]:
"""
Runs a single question through ReCall and returns:
{
"answer": str,
"transcript": str,
"tool_calls": Any,
"chat": Any | None
}
"""
if executor_url is None:
executor_url = os.environ["HOST_SERPER_URL"]
if model_url is None:
model_url = os.environ["HF_MODEL_URL"]
# 1) tokenizer (REQUIRED by ReCall.run)
tok = AutoTokenizer.from_pretrained(tokenizer_dir, trust_remote_code=True)
# 2) build agent
agent = ReCall(executor_url=executor_url)
last_out = ""
# 3) call the correct entrypoint
if model_url == deepseek_name:
# some setups use a special deepseek path that returns (transcript, tool_calls)
out = agent.run_deepseek(
env=search_env,
func_schemas=func_schemas,
question=question,
model_name=deepseek_name,
temperature=temperature,
max_tokens=max_new_tokens,
top_p=top_p,
)
transcript, tool_calls, chat = _normalize_out(out, expect_chat=False)
last_out = transcript
else:
# standard ReCall.run MUST receive tokenizer
agent_generator = agent.run(
env=search_env,
func_schemas=func_schemas,
question=question,
model_url=model_url,
temperature=temperature,
max_new_tokens=max_new_tokens,
tokenizer=tok, # <- fixes your "missing tokenizer" error
top_p=top_p,
old_prompt=old_prompt,# <- you can pass the raw old prompt here if there exists an older chat history
# the function will append the question to the raw old prompt string (chat history) if it is not None
deepresearch_on=deepresearch_on,
summary_llm=summary_llm
# deepresearch=deepresearch, # <- use the deepresearch prompt
)
while True:
try:
tag, out = next(agent_generator)
if tag == "assistant_resp":
last_out = out[0]
yield tag, out
if tag == "end":
break
except StopIteration as e:
# the chat_str variable contains the whole conversation in the raw string form
# it contains the raw tokens like "<|im_start|>system\n", "<|im_end|>"
# and "<|im_start|>assistant\n<think>", "<tool_response>", "\n</tool_response>\n", etc.
chat_str: str = e.value[1][0]
yield "end", (chat_str,)
break
# 4) parse final answer
answer = _parse_answer_from_transcript(last_out)
return "answer", (answer,)
def _normalize_out(out: Any, expect_chat: bool) -> tuple[str, Any, Any]:
"""
Normalize ReCall outputs to (transcript, tool_calls, chat)
Handles:
- (transcript, tool_calls, chat)
- (transcript, tool_calls)
- "transcript"
- {"transcript": ..., "tool_calls": ..., "chat": ...} variants
"""
transcript, tool_calls, chat = "", None, None
if isinstance(out, tuple):
if len(out) == 3:
transcript, tool_calls, chat = out
elif len(out) == 2:
transcript, tool_calls = out
elif len(out) == 1:
transcript = out[0]
else:
transcript = str(out[-1])
elif isinstance(out, dict):
transcript = out.get("transcript") or out.get("output") or out.get("response") or ""
tool_calls = out.get("tool_calls")
chat = out.get("chat")
else:
transcript = str(out)
# Some implementations return None/empty; keep things predictable
if chat is None and expect_chat is False:
chat = None
return transcript, tool_calls, chat
# quick demo
if __name__ == "__main__":
old_prompt = None
answer_generator = answer_question_recall(
"What is the most popular restraunt in kolkata?",
old_prompt=old_prompt
)
# print("ANSWER:", res["answer"])
# print("\n")
# # print(type(res["tool_calls"]), len(res["tool_calls"]))
# for i in res["tool_calls"]:
# print(f"{i}\n")
# print("\n")
# if res["chat"] is not None:
# # print(type(res["chat"]), len(res["chat"]))
# for i in res["chat"]:
# print(f"{i}\n")
# print("\n")
# print("TRANSCRIPT (tail):\n", res["transcript"][-300:])
final_chat_str = ""
while True:
try:
tag, out = next(answer_generator)
if tag == "assistant_resp":
assistant_text, tool_calls = out
print(f"ASSISTANT RESPONSE:\n{assistant_text}\n\n")
print("TOOL CALLS:\n")
for tool_call in tool_calls:
print(f"{tool_call}")
print("\n")
elif tag == "tool_results":
results = out[0]
print("TOOL RESULTS:\n")
for result in results:
print(f"{result}")
print("\n")
elif tag == "end":
print(f"{'='*20}\nASSISTANT RESPONSE ENDED\n{'='*20}\n\n")
final_chat_str = out[0]
elif tag == "answer":
answer = out[0]
print(f"FINAL ANSWER:\n{answer}\n\n")
break
except StopIteration as e:
print(f"FINAL ANSWER:\n{e.value[1][0]}\n\n")
break
print(f"{'='*20}\nEND\n{'='*20}\n\n\nFINAL CHAT STRING:\n{final_chat_str}\n\n") |