File size: 3,395 Bytes
790fb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---

title: FathomDeepResearch
emoji: ๐Ÿงฎ
colorFrom: blue
colorTo: red
sdk: docker
app_port: 7860
pinned: false
license: apache-2.0
short_description: Advanced research AI with web search capabilities
---


# ๐Ÿ”ฌ FathomDeepResearch

Advanced AI research agent powered by Fathom-Search-4B and Fathom-Synthesizer-4B models. This app provides deep research capabilities with real-time web search and intelligent synthesis.

## ๐Ÿš€ Features

- **๐Ÿง  Advanced Reasoning**: Powered by Fathom-R1-14B for sophisticated thinking
- **๐Ÿ” Real-time Web Search**: Integrated search across multiple sources  
- **๐Ÿ“Š Intelligent Synthesis**: Combines search results into coherent answers
- **๐ŸŽจ Rich UI Components**: Streamlined chat interface with progress tracking
- **โšก Fast Performance**: Optimized for Hugging Face Spaces

## ๐Ÿ› ๏ธ How to Use

1. **Enter your research question** in the text box
2. **Click "Research"** to start the deep research process
3. **Watch progress** as the AI searches and synthesizes information
4. **Get comprehensive answers** with source citations

## ๐Ÿ’ก Example Questions

- "What are the latest AI developments in 2024?"
- "DeepResearch on climate change solutions"
- "UPSC 2025 preparation strategy"
- "Comparative analysis of electric vehicle adoption"

## ๐Ÿ”ง Technical Details

### Models Used
- **Fathom-Search-4B**: For web search and retrieval
- **Fathom-Synthesizer-4B**: For answer synthesis
- **Fathom-R1-14B**: For reasoning and planning

### Architecture
- **Backend**: FastAPI with Gradio integration
- **Frontend**: React-based chat interface
- **Search**: Multi-source web search with Serper API
- **Deployment**: Docker containers optimized for HF Spaces

## ๐Ÿ“‹ Requirements

- Python 3.10+
- Transformers 4.35+
- Gradio 4.0+
- FastAPI
- Hugging Face Transformers

## ๐ŸŒ Deployment

This app is deployed on Hugging Face Spaces using Docker. The setup includes:

- Automatic model downloading
- Environment configuration
- Error handling and fallbacks
- Multi-modal capabilities

## ๐Ÿ“– License

Apache 2.0 License - See LICENSE file for details

## ๐Ÿค Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## ๐Ÿ“ž Support

For issues or questions:
- Check the docs folder for detailed documentation
- Open an issue on the repository
- Contact the development team

## ๐Ÿงฉ Building the Docker image locally (private Hugging Face repo)

If the source is in a private Hugging Face Space, provide a token when building the image. The Dockerfile clones the repository during build using the build-arg `HF_API_TOKEN`.

Examples (PowerShell):

Provide token as a build-arg (less secure, visible in image history):

```powershell

docker build -t fathom-deploy --build-arg HF_API_TOKEN=hf_xxx .

```

Using BuildKit and a secret (recommended):

```powershell

 $env:DOCKER_BUILDKIT=1; docker build --secret id=hf_token,src=$env:USERPROFILE\.hf_token -t fathom-deploy .

```

Place your token in a file (e.g. %USERPROFILE%\.hf_token) containing only the token string, then reference it with `--secret`. You would need to adapt the Dockerfile to read from `/run/secrets/hf_token` if you choose this approach.

Note: If the repository is public you can omit the build-arg and the Dockerfile will clone anonymously.