File size: 6,683 Bytes
c7f3ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import json
import torch
import numpy as np
import torchaudio
from typing import List

from soulxsinger.utils.audio_utils import load_wav


class DataProcessor:
    """Data processor for SoulX-Singer
    """
    def __init__(
                self, 
                hop_size: int, 
                sample_rate: int, 
                phoneset_path: str = 'soulxsinger/utils/phoneme/phone_set.json',
                device: str = 'cuda',
                prompt_append_duration: float = 0.5):
        """Initialize data processor.

        Args:
            hop_size (int): Hop size in samples.
            sample_rate (int): Sample rate in Hz.
            phoneset_path (str): Path to phoneme set JSON file.
            device (str): Device to use for tensor operations.
            prompt_append_duration (float): Duration to append to prompt in seconds.
        """
        self.hop_size = hop_size
        self.sample_rate = sample_rate
        self.device = device
        self.prompt_append_duration = prompt_append_duration
        self.prompt_append_length = int(prompt_append_duration * sample_rate / hop_size)
        self.load_phoneme_id_map(phoneset_path)

    def load_phoneme_id_map(self, phoneset_path: str):
        with open(phoneset_path, "r", encoding='utf-8') as f:
            phoneset = json.load(f)
        self.phone2idx = {ph: idx for idx, ph in enumerate(phoneset)}
    
    def merge_phoneme(self, meta):
        merged_items = []

        duration = [float(x) for x in meta["duration"].split()]
        phoneme = [str(x).replace("<AP>", "<SP>") for i, x in enumerate(meta["phoneme"].split())]
        note_pitch = [int(x) for x in meta["note_pitch"].split()]
        note_type = [int(x) if phoneme[i] != "<SP>" else 1 for i, x in enumerate(meta["note_type"].split())]

        for i in range(len(phoneme)):
            if i > 0 and phoneme[i] == phoneme[i - 1] == "<SP>" and note_type[i] == note_type[i - 1] and note_pitch[i] == note_pitch[i - 1]:
                merged_items[-1][1] += duration[i]
            else:
                merged_items.append([phoneme[i], duration[i], note_pitch[i], note_type[i]])

        single_frame_duration = self.hop_size / self.sample_rate
        meta['phoneme'] =  [x[0] for x in merged_items]
        meta['duration'] = [x[1] for x in merged_items]
        meta['note_pitch'] = [x[2] for x in merged_items]
        meta['note_type'] = [x[3] for x in merged_items]

        return meta
    
    def preprocess(
        self,
        note_duration: List[float],
        phonemes: List[str],
        note_pitch: List[int],
        note_type: List[int],
    ):
        """
        Insert <BOW> and <EOW> for each note. 
        Get aligned indices for each frame.

        Args:
            note_duration: Duration of each note in seconds
            phonemes: Phoneme sequence for each note
            note_pitch: Pitch value for each note
            note_type: Type value for each note
        
        """
        sample_rate = self.sample_rate
        hop_size = self.hop_size
        duration = sum(note_duration) * sample_rate / hop_size
        mel2note = torch.zeros(int(duration), dtype=torch.long)

        ph_locations = []   # idx at mel scale and length
        new_phonemes = []
        dur_sum = 0

        note2origin = []

        for ph_idx in range(len(phonemes)):
            dur = int(np.round(dur_sum * sample_rate / hop_size))
            dur = min(dur, len(mel2note) - 1)
            new_phonemes.append("<BOW>")
            note2origin.append(ph_idx)
            if phonemes[ph_idx][:3] == "en_":
                en_phs = ['en_' + x for x in phonemes[ph_idx][3:].split('-')] + ['<SEP>']     # <sep> between en words in one note
                ph_locations.append([dur, max(1, len(en_phs))])
                new_phonemes.extend(en_phs)
                note2origin.extend([ph_idx] * len(en_phs))
            else:
                ph_locations.append([dur, 1])
                new_phonemes.append(phonemes[ph_idx])
                note2origin.append(ph_idx)
            new_phonemes.append("<EOW>")
            note2origin.append(ph_idx)
            dur_sum += note_duration[ph_idx]

        ph_idx = 1
        for idx, (i, j) in enumerate(ph_locations):
            next_phoneme_start = ph_locations[idx + 1][0] if idx < len(ph_locations) - 1 else len(mel2note)
            if i >= len(mel2note) or i + j > len(mel2note):
                break
            if i < len(mel2note) and mel2note[i] > 0:
                # print(f"warning: overlap of {idx}: {mel2note[i]}")
                while i < len(mel2note) and mel2note[i] > 0:
                    i += 1
            mel2note[i] = ph_idx
            k = i + 1
            while k + j < next_phoneme_start:
                mel2note[k : k + j] = torch.arange(ph_idx, ph_idx + j) + 1
                k += j
            mel2note[next_phoneme_start - 1] = ph_idx + j + 1
            ph_idx += j + 2     # <BOW> + ph repeats + <EOW>

        new_phonemes = ["<PAD>"] + new_phonemes
        new_note_pitch = [0] + [note_pitch[k] for k in note2origin]
        new_note_type = [1] + [note_type[k] for k in note2origin]

        return {
            "phoneme": torch.tensor([self.phone2idx[x] for x in new_phonemes], device=self.device).unsqueeze(0),
            "note_pitch": torch.tensor(new_note_pitch, device=self.device).unsqueeze(0),
            "note_type": torch.tensor(new_note_type, device=self.device).unsqueeze(0),
            "mel2note": mel2note.clone().detach().to(self.device).unsqueeze(0),
        }
    
    def process(
        self,
        meta: dict,
        wav_path: str = None
    ):

        meta = self.merge_phoneme(meta)
        
        item = self.preprocess(
            meta["duration"],
            meta["phoneme"],
            meta["note_pitch"],
            meta["note_type"],
        )

        f0 = torch.tensor([float(x) for x in meta["f0"].split()])
        min_frame = min(item["mel2note"].shape[1], f0.shape[0])
        item['f0'] = f0[:min_frame].unsqueeze(0).float().to(self.device)
        item["mel2note"] = item["mel2note"][:, :min_frame]

        if wav_path is not None:
            waveform = load_wav(wav_path, self.sample_rate)
            item["waveform"] = waveform.to(self.device)[:, :min_frame * self.hop_size]
        
        return item


# test
if __name__ == "__main__":
    import json
    with open("example/metadata/zh_prompt.json", "r", encoding="utf-8") as f:
        meta = json.load(f)
    if isinstance(meta, list):
        meta = meta[0]
    processor = DataProcessor(hop_size=480, sample_rate=24000)
    item = processor.process(meta, "example/audio/zh_prompt.wav")
    print(item.keys())