InfiniteLobster commited on
Commit
250a0ca
·
1 Parent(s): 6518169

Migration with slight changes

Browse files
Files changed (3) hide show
  1. app.py +207 -0
  2. model.py +205 -0
  3. requirements.txt +0 -0
app.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from pathlib import Path
3
+ from huggingface_hub import hf_hub_download
4
+ from PIL import Image
5
+ from torchvision import transforms
6
+ from medmnist import INFO
7
+ import gradio as gr
8
+ import os
9
+ import base64
10
+ from io import BytesIO
11
+ from huggingface_hub import HfApi
12
+ from datetime import datetime
13
+ import io
14
+
15
+ from model import resnet18, resnet50
16
+
17
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
18
+ AUTH_TOKEN = os.getenv("APP_TOKEN")#to acces the app
19
+ DATASET_REPO = os.getenv("Dataset_repo") #"G44mlops/API_received"
20
+ HF_TOKEN = os.getenv("HF_TOKEN") #to acces dataset repo
21
+ MODEL = os.getenv("Model_repo")#"G44mlops/ResNet-medmnist"
22
+
23
+ #taken from Mikolaj code with closed PR
24
+ def load_model_from_hf(
25
+ repo_id: str,
26
+ filename: str,
27
+ model_type: str,
28
+ num_classes: int,
29
+ in_channels: int,
30
+ device: str,
31
+ ) -> torch.nn.Module:
32
+ """Load trained model from Hugging Face Hub.
33
+
34
+ Args:
35
+ repo_id: Hugging Face repository ID
36
+ filename: Model checkpoint filename
37
+ model_type: Type of model ('resnet18' or 'resnet50')
38
+ num_classes: Number of output classes
39
+ in_channels: Number of input channels
40
+ device: Device to load model on
41
+
42
+ Returns:
43
+ Loaded model in eval mode
44
+ """
45
+ print(f"Downloading model from Hugging Face: {repo_id}/{filename}")
46
+ checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
47
+
48
+ # Create model
49
+ if model_type == "resnet18":
50
+ model = resnet18(num_classes=num_classes, in_channels=in_channels)
51
+ else:
52
+ model = resnet50(num_classes=num_classes, in_channels=in_channels)
53
+
54
+ # Load checkpoint
55
+ checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=True)
56
+ model.load_state_dict(checkpoint["model_state_dict"])
57
+ model.to(device)
58
+ model.eval()
59
+
60
+ return model
61
+ #taken from Mikolaj code with closed PR
62
+
63
+
64
+ # Image preprocessing pipeline (basic so far, can be improved)
65
+ def get_preprocessing_pipeline() -> transforms.Compose:
66
+ """Get preprocessing pipeline for images."""
67
+ #getting information on number of image channels (RGB or Grayscale) for trained model
68
+ info = INFO["organamnist"] # Using organamnist as reference
69
+ output_channels = info["n_channels"] # RGB or Grayscale
70
+ #chosing 'standard' mean and std values for normalization if dataset statistics are not available
71
+ mean = (0.5,) * output_channels
72
+ std = (0.5,) * output_channels
73
+ #preparing transformation pipeline
74
+ trans = transforms.Compose([
75
+ transforms.Resize(256),
76
+ transforms.CenterCrop(224),
77
+ transforms.ToTensor(),
78
+ transforms.Normalize(mean=mean, std=std),
79
+ ])
80
+ #returning the transformation pipeline
81
+ return trans
82
+ def get_class_labels(data_flag: str = "organamnist") -> list[str]:
83
+ """Get class labels for MedMNIST dataset."""
84
+ #retrieving dataset info
85
+ info = INFO[data_flag]
86
+ labels = info["label"]
87
+ #returning class labels
88
+ return labels
89
+
90
+ def save_image_to_hf_folder(image_path, prediction_label):
91
+ """Upload image to HF dataset folder."""
92
+ api = HfApi()
93
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
94
+
95
+ # Create a text file with metadata
96
+ metadata = f"prediction: {prediction_label}\ntimestamp: {timestamp}"
97
+ metadata_path = f"{Path(image_path).stem}_metadata.txt"
98
+
99
+ # Upload image
100
+ api.upload_file(
101
+ path_or_fileobj=image_path,
102
+ path_in_repo=f"uploads/{timestamp}_{Path(image_path).name}",
103
+ repo_id=DATASET_REPO,
104
+ repo_type="dataset",
105
+ token=HF_TOKEN
106
+ )
107
+ # Upload metadata as separate file
108
+ api.upload_file(
109
+ path_or_fileobj=io.BytesIO(metadata.encode()),
110
+ path_in_repo=f"uploads/{timestamp}_{Path(image_path).stem}_metadata.txt",
111
+ repo_id=DATASET_REPO,
112
+ repo_type="dataset",
113
+ token=HF_TOKEN
114
+ )
115
+
116
+ def classify_images(images) -> str:
117
+ """Classify images and return formatted HTML with embedded images."""
118
+ # Handle case with no images
119
+ if images is None:
120
+ return "<p>No images uploaded</p>"
121
+ # Ensure images is a list if(case when only one image is uploaded is problematic without it)
122
+ if isinstance(images, str):
123
+ images = [images]
124
+ #creating HTML structure for results
125
+ html = "<div style='display: flex; flex-wrap: wrap; gap: 30px; padding: 20px; justify-content: center;'>"
126
+ #loop over images and classify them
127
+ for image_path in images:
128
+ #preparing image for classification
129
+ img = Image.open(image_path).convert("L") # Convert to grayscale (as project uses grayscale images)
130
+ input_tensor = preprocess(img).unsqueeze(0)
131
+ #forward pass + softmax to get probabilities
132
+ with torch.no_grad():
133
+ output = model(input_tensor)
134
+ probs = torch.nn.functional.softmax(output[0], dim=0)
135
+ top_class = probs.argmax().item()
136
+ #getting class label
137
+ label = class_labels[str(top_class)]
138
+ #getting image filename
139
+ filename = Path(image_path).name
140
+ #Preparing image for embedding in HTML (base64 encoding)
141
+ buffered = BytesIO()
142
+ img.save(buffered, format="JPEG")
143
+ img_str = base64.b64encode(buffered.getvalue()).decode()
144
+ #adding current image block to HTML
145
+ html += f"""
146
+ <div style='border: 2px solid #ddd; padding: 15px; border-radius: 8px; background: #f9f9f9; width: 280px;'>
147
+ <p style='font-size: 14px; color: #666; margin: 0 0 10px 0; text-align: center; font-weight: bold;'>{filename}</p>
148
+ <img src='data:image/jpeg;base64,{img_str}' style='width: 250px; height: 250px; object-fit: contain; display: block; margin: 0 auto 10px;'>
149
+ <p style='font-size: 18px; color: #0066cc; margin: 10px 0 0 0; text-align: center; font-weight: bold;'>{label}</p>
150
+ </div>
151
+ """
152
+ # Save image and metadata to HF dataset folder
153
+ save_image_to_hf_folder(image_path, label)
154
+ #closing HTML container
155
+ html += "</div>"
156
+ #returning results
157
+ return html
158
+
159
+ ###main code to launch Gradio app###
160
+
161
+ #prepare model and preprocessing pipeline (kind of backend)
162
+ model = load_model_from_hf(#taken from Mikolaj code with closed PR
163
+ repo_id=MODEL,
164
+ filename="resnet18_best.pth",
165
+ model_type="resnet18",
166
+ num_classes=11,
167
+ in_channels=1,
168
+ device=DEVICE,
169
+ )
170
+ preprocess = get_preprocessing_pipeline()
171
+ class_labels = get_class_labels()
172
+ #preparing Gradio interface (frontend)
173
+ with gr.Blocks() as demo:
174
+ #app "title"
175
+ gr.Markdown("<h1 style='text-align: center;'> MLOps project - MedMNIST dataset Image Classifier</h1>")
176
+ #app message/information )
177
+ gr.Markdown("This is a Gradio web application for MLOps course project. Given images are stored in our dataset. " \
178
+ "By uploading images you agrree that they will be stored by us and insures that they can be stored by us. " \
179
+ "If you somewhat passed the login and are not connected to the project, please do not upload any images. " )
180
+ #app spine layout
181
+ with gr.Column():
182
+ #title of load segment
183
+ gr.Markdown("<h2 style='text-align: center;'> Upload Images</h2>")
184
+ #images loading component
185
+ images_input = gr.File(file_count="multiple", file_types=["image"], label="Upload Images")
186
+ #buttons row for app functionality
187
+ with gr.Row():
188
+ submit_btn = gr.Button("Classify")
189
+ reset_btn = gr.Button("Reset")
190
+ #title of results segment
191
+ gr.Markdown("<h2 style='text-align: center;'> Results</h2>")
192
+ #classification results output component
193
+ output = gr.HTML(label="Results")
194
+ #getting callable reset function
195
+ def reset():
196
+ return None, ""
197
+ #linking buttons to functions
198
+ submit_btn.click(classify_images, inputs=images_input, outputs=output)
199
+ reset_btn.click(reset, outputs=[images_input, output])
200
+
201
+
202
+ #just launch
203
+ server_name = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
204
+ demo.launch(
205
+ server_name=server_name,
206
+ auth=[("user", AUTH_TOKEN)] if AUTH_TOKEN else None
207
+ )
model.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class BasicBlock(nn.Module):
6
+ """Basic building block for ResNet-18/34"""
7
+ expansion = 1
8
+
9
+ def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
10
+ super().__init__()
11
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
12
+ self.bn1 = nn.BatchNorm2d(out_channels)
13
+ self.relu = nn.ReLU(inplace=True)
14
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
15
+ self.bn2 = nn.BatchNorm2d(out_channels)
16
+ self.downsample = downsample
17
+
18
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
19
+ identity = x
20
+
21
+ out = self.conv1(x)
22
+ out = self.bn1(out)
23
+ out = self.relu(out)
24
+
25
+ out = self.conv2(out)
26
+ out = self.bn2(out)
27
+
28
+ if self.downsample is not None:
29
+ identity = self.downsample(x)
30
+
31
+ out += identity
32
+ out = self.relu(out)
33
+
34
+ return out
35
+
36
+
37
+ class Bottleneck(nn.Module):
38
+ """Bottleneck building block for ResNet-50/101/152"""
39
+ expansion = 4
40
+
41
+ def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None):
42
+ super().__init__()
43
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
44
+ self.bn1 = nn.BatchNorm2d(out_channels)
45
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
46
+ self.bn2 = nn.BatchNorm2d(out_channels)
47
+ self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
48
+ self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
49
+ self.relu = nn.ReLU(inplace=True)
50
+ self.downsample = downsample
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ identity = x
54
+
55
+ out = self.conv1(x)
56
+ out = self.bn1(out)
57
+ out = self.relu(out)
58
+
59
+ out = self.conv2(out)
60
+ out = self.bn2(out)
61
+ out = self.relu(out)
62
+
63
+ out = self.conv3(out)
64
+ out = self.bn3(out)
65
+
66
+ if self.downsample is not None:
67
+ identity = self.downsample(x)
68
+
69
+ out += identity
70
+ out = self.relu(out)
71
+
72
+ return out
73
+
74
+
75
+ class ResNet(nn.Module):
76
+ """ResNet model for image classification
77
+
78
+ Supports ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152
79
+ Adapted for small images like MedMNIST (28x28)
80
+ """
81
+
82
+ def __init__(
83
+ self,
84
+ block: type[BasicBlock | Bottleneck],
85
+ layers: list[int],
86
+ num_classes: int = 11,
87
+ in_channels: int = 1,
88
+ ):
89
+ super().__init__()
90
+ self.in_channels = 64
91
+
92
+ # Initial convolution layer (adapted for small 28x28 images)
93
+ self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False)
94
+ self.bn1 = nn.BatchNorm2d(64)
95
+ self.relu = nn.ReLU(inplace=True)
96
+ # Removed maxpool for small images
97
+
98
+ # ResNet layers
99
+ self.layer1 = self._make_layer(block, 64, layers[0])
100
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
101
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
102
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
103
+
104
+ # Global average pooling and classifier
105
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
106
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
107
+
108
+ # Initialize weights
109
+ self._initialize_weights()
110
+
111
+ def _make_layer(self, block: type[BasicBlock | Bottleneck], out_channels: int, blocks: int, stride: int = 1) -> nn.Sequential:
112
+ downsample = None
113
+ if stride != 1 or self.in_channels != out_channels * block.expansion:
114
+ downsample = nn.Sequential(
115
+ nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
116
+ nn.BatchNorm2d(out_channels * block.expansion),
117
+ )
118
+
119
+ layers = []
120
+ layers.append(block(self.in_channels, out_channels, stride, downsample))
121
+ self.in_channels = out_channels * block.expansion
122
+ for _ in range(1, blocks):
123
+ layers.append(block(self.in_channels, out_channels))
124
+
125
+ return nn.Sequential(*layers)
126
+
127
+ def _initialize_weights(self):
128
+ for m in self.modules():
129
+ if isinstance(m, nn.Conv2d):
130
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
131
+ elif isinstance(m, nn.BatchNorm2d):
132
+ nn.init.constant_(m.weight, 1)
133
+ nn.init.constant_(m.bias, 0)
134
+
135
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
136
+ x = self.conv1(x)
137
+ x = self.bn1(x)
138
+ x = self.relu(x)
139
+
140
+ x = self.layer1(x)
141
+ x = self.layer2(x)
142
+ x = self.layer3(x)
143
+ x = self.layer4(x)
144
+
145
+ x = self.avgpool(x)
146
+ x = torch.flatten(x, 1)
147
+ x = self.fc(x)
148
+
149
+ return x
150
+
151
+
152
+ def resnet18(num_classes: int = 11, in_channels: int = 1) -> ResNet:
153
+ """ResNet-18 model
154
+
155
+ Args:
156
+ num_classes: Number of output classes (default: 11 for organamnist)
157
+ in_channels: Number of input channels (default: 1 for grayscale)
158
+
159
+ Returns:
160
+ ResNet-18 model
161
+ """
162
+ return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_channels=in_channels)
163
+
164
+
165
+ def resnet50(num_classes: int = 11, in_channels: int = 1) -> ResNet:
166
+ """ResNet-50 model
167
+
168
+ Args:
169
+ num_classes: Number of output classes (default: 11 for organamnist)
170
+ in_channels: Number of input channels (default: 1 for grayscale)
171
+
172
+ Returns:
173
+ ResNet-50 model
174
+ """
175
+ return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_channels=in_channels)
176
+
177
+
178
+ # Keep the old Model class for backward compatibility
179
+ class Model(nn.Module):
180
+ """Just a dummy model to show how to structure your code"""
181
+ def __init__(self):
182
+ super().__init__()
183
+ self.layer = nn.Linear(1, 1)
184
+
185
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
186
+ return self.layer(x)
187
+
188
+
189
+ if __name__ == "__main__":
190
+ # Test ResNet-18
191
+ model18 = resnet18(num_classes=11, in_channels=1)
192
+ x = torch.rand(4, 1, 28, 28) # Batch of 4 grayscale 28x28 images
193
+ output = model18(x)
194
+ print(f"ResNet-18 output shape: {output.shape}") # Should be [4, 11]
195
+
196
+ # Test ResNet-50
197
+ model50 = resnet50(num_classes=11, in_channels=1)
198
+ output50 = model50(x)
199
+ print(f"ResNet-50 output shape: {output50.shape}") # Should be [4, 11]
200
+
201
+ # Count parameters
202
+ params18 = sum(p.numel() for p in model18.parameters())
203
+ params50 = sum(p.numel() for p in model50.parameters())
204
+ print(f"ResNet-18 parameters: {params18:,}")
205
+ print(f"ResNet-50 parameters: {params50:,}")
requirements.txt ADDED
Binary file (14.4 kB). View file