import torch from torch import nn class BasicBlock(nn.Module): """Basic building block for ResNet-18/34""" expansion = 1 def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """Bottleneck building block for ResNet-50/101/152""" expansion = 4 def __init__(self, in_channels: int, out_channels: int, stride: int = 1, downsample: nn.Module = None): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): """ResNet model for image classification Supports ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152 Adapted for small images like MedMNIST (28x28) """ def __init__( self, block: type[BasicBlock | Bottleneck], layers: list[int], num_classes: int = 11, in_channels: int = 1, ): super().__init__() self.in_channels = 64 # Initial convolution layer (adapted for small 28x28 images) self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # Removed maxpool for small images # ResNet layers self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # Global average pooling and classifier self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # Initialize weights self._initialize_weights() def _make_layer(self, block: type[BasicBlock | Bottleneck], out_channels: int, blocks: int, stride: int = 1) -> nn.Sequential: downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def resnet18(num_classes: int = 11, in_channels: int = 1) -> ResNet: """ResNet-18 model Args: num_classes: Number of output classes (default: 11 for organamnist) in_channels: Number of input channels (default: 1 for grayscale) Returns: ResNet-18 model """ return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, in_channels=in_channels) def resnet50(num_classes: int = 11, in_channels: int = 1) -> ResNet: """ResNet-50 model Args: num_classes: Number of output classes (default: 11 for organamnist) in_channels: Number of input channels (default: 1 for grayscale) Returns: ResNet-50 model """ return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, in_channels=in_channels) # Keep the old Model class for backward compatibility class Model(nn.Module): """Just a dummy model to show how to structure your code""" def __init__(self): super().__init__() self.layer = nn.Linear(1, 1) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.layer(x) if __name__ == "__main__": # Test ResNet-18 model18 = resnet18(num_classes=11, in_channels=1) x = torch.rand(4, 1, 28, 28) # Batch of 4 grayscale 28x28 images output = model18(x) print(f"ResNet-18 output shape: {output.shape}") # Should be [4, 11] # Test ResNet-50 model50 = resnet50(num_classes=11, in_channels=1) output50 = model50(x) print(f"ResNet-50 output shape: {output50.shape}") # Should be [4, 11] # Count parameters params18 = sum(p.numel() for p in model18.parameters()) params50 = sum(p.numel() for p in model50.parameters()) print(f"ResNet-18 parameters: {params18:,}") print(f"ResNet-50 parameters: {params50:,}")