Spaces:
Runtime error
Runtime error
Commit
·
af3419a
1
Parent(s):
a00f952
Update tridentmodel/classification.py
Browse files- tridentmodel/classification.py +98 -98
tridentmodel/classification.py
CHANGED
|
@@ -126,101 +126,101 @@ def mean_pooling(model_output, attention_mask):
|
|
| 126 |
return tf.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.clip_by_value(input_mask_expanded.sum(1), clip_value_min=1e-9, clip_value_max=math.inf)
|
| 127 |
|
| 128 |
### Sentence Embedder
|
| 129 |
-
def sentence_embedder(sentences, model_path):
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
### Sentence Embedding Preparation Function
|
| 146 |
-
def convert_saved_embeddings(embedding_string):
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
### Generating Class Embeddings
|
| 168 |
-
|
| 169 |
-
Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here
|
| 170 |
-
def class_embbedding_generator(classes):
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
### Broad Scope Classifier
|
| 188 |
-
Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here
|
| 189 |
-
def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensitivity='Medium'):
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
| 126 |
return tf.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.clip_by_value(input_mask_expanded.sum(1), clip_value_min=1e-9, clip_value_max=math.inf)
|
| 127 |
|
| 128 |
### Sentence Embedder
|
| 129 |
+
# def sentence_embedder(sentences, model_path):
|
| 130 |
+
# """
|
| 131 |
+
# Calling the sentence similarity model to generate embeddings on input text.
|
| 132 |
+
# :param sentences: takes input text in the form of a string
|
| 133 |
+
# :param model_path: path to the text similarity model
|
| 134 |
+
# :return returns a (1, 384) embedding of the input text
|
| 135 |
+
# """
|
| 136 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
|
| 137 |
+
# model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
|
| 138 |
+
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 139 |
+
# # Compute token embeddings
|
| 140 |
+
# with torch.no_grad():
|
| 141 |
+
# model_output = model(**encoded_input)
|
| 142 |
+
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #outputs a (1, 384) tensor representation of input text
|
| 143 |
+
# return sentence_embeddings
|
| 144 |
+
|
| 145 |
+
# ### Sentence Embedding Preparation Function
|
| 146 |
+
# def convert_saved_embeddings(embedding_string):
|
| 147 |
+
# """
|
| 148 |
+
# Preparing pre-computed embeddings for use for comparison with new abstract embeddings .
|
| 149 |
+
# Pre-computed embeddings are saved as tensors in string format so need to be converted back to numpy arrays in order to calculate cosine similarity.
|
| 150 |
+
# :param embedding_string:
|
| 151 |
+
# :return: Should be a single tensor with dims (,384) in string formate
|
| 152 |
+
# """
|
| 153 |
+
# embedding = embedding_string.replace('(', '')
|
| 154 |
+
# embedding = embedding.replace(')', '')
|
| 155 |
+
# embedding = embedding.replace('[', '')
|
| 156 |
+
# embedding = embedding.replace(']', '')
|
| 157 |
+
# embedding = embedding.replace('tensor', '')
|
| 158 |
+
# embedding = embedding.replace(' ', '')
|
| 159 |
+
# embedding = embedding.split(',')
|
| 160 |
+
# embedding = [float(x) for x in embedding]
|
| 161 |
+
# embedding = np.array(embedding)
|
| 162 |
+
# embedding = np.expand_dims(embedding, axis=0)
|
| 163 |
+
# embedding = torch.from_numpy(embedding)
|
| 164 |
+
# return embedding
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# ### Generating Class Embeddings
|
| 168 |
+
|
| 169 |
+
# Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here
|
| 170 |
+
# def class_embbedding_generator(classes):
|
| 171 |
+
# """
|
| 172 |
+
# This function is to be used to generate and save class embeddings
|
| 173 |
+
# Takes an input of 'cleaned' classes, generated by clean_data function, and computes vector representations of these classes (the embeddings) and saves them to csv
|
| 174 |
+
# :classes: Classes should be a dataframe including all of broad scope classes that are intended to be used to make comparisons with
|
| 175 |
+
# """
|
| 176 |
+
# class_embeddings = pd.DataFrame(columns=['Class', 'Description', 'Embedding'])
|
| 177 |
+
# for i in range(len(classes)):
|
| 178 |
+
# class_name = classes.iloc[i, 0]
|
| 179 |
+
# print(class_name)
|
| 180 |
+
# class_description = classes.iloc[i, 1]
|
| 181 |
+
# class_description_embedding = sentence_embedder(class_description, Model_Path)
|
| 182 |
+
# class_description_embedding = class_description_embedding.numpy()
|
| 183 |
+
# class_description_embedding = torch.from_numpy(class_description_embedding)
|
| 184 |
+
# embedding_entry = [class_name, class_description, class_description_embedding]
|
| 185 |
+
# class_embeddings.loc[len(class_embeddings)] = embedding_entry
|
| 186 |
+
|
| 187 |
+
# ### Broad Scope Classifier
|
| 188 |
+
# Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here
|
| 189 |
+
# def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensitivity='Medium'):
|
| 190 |
+
# """
|
| 191 |
+
# Takes in pre-computed class embeddings and abstract texts, converts abstract text into
|
| 192 |
+
# :param class_embeddings: dataframe of class embeddings
|
| 193 |
+
# :param abstract: a single abstract embedding
|
| 194 |
+
# :param N: N highest matching classes to return, from highest to lowest, default is 5
|
| 195 |
+
# :return: predictions: a full dataframe of all the predictions on the 9500+ classes, HighestSimilarity: Dataframe of the N most similar classes
|
| 196 |
+
# """
|
| 197 |
+
# predictions = pd.DataFrame(columns=['Class Name', 'Score'])
|
| 198 |
+
# for i in range(len(class_embeddings)):
|
| 199 |
+
# class_name = class_embeddings.iloc[i, 0]
|
| 200 |
+
# embedding = class_embeddings.iloc[i, 2]
|
| 201 |
+
# embedding = convert_saved_embeddings(embedding)
|
| 202 |
+
# abstract_embedding = abstract_embedding.numpy()
|
| 203 |
+
# abstract_embedding = torch.from_numpy(abstract_embedding)
|
| 204 |
+
# cos = torch.nn.CosineSimilarity(dim=1)
|
| 205 |
+
# score = cos(abstract_embedding, embedding).numpy().tolist()
|
| 206 |
+
# result = [class_name, score[0]]
|
| 207 |
+
# predictions.loc[len(predictions)] = result
|
| 208 |
+
# greenpredictions = predictions.tail(52)
|
| 209 |
+
# if Sensitivity == 'High':
|
| 210 |
+
# Threshold = 0.5
|
| 211 |
+
# elif Sensitivity == 'Medium':
|
| 212 |
+
# Threshold = 0.40
|
| 213 |
+
# elif Sensitivity == 'Low':
|
| 214 |
+
# Threshold = 0.35
|
| 215 |
+
# GreenLikelihood = 'False'
|
| 216 |
+
# for i in range(len(greenpredictions)):
|
| 217 |
+
# score = greenpredictions.iloc[i, 1]
|
| 218 |
+
# if float(score) >= Threshold:
|
| 219 |
+
# GreenLikelihood = 'True'
|
| 220 |
+
# break
|
| 221 |
+
# else:
|
| 222 |
+
# continue
|
| 223 |
+
# HighestSimilarity = predictions.nlargest(N, ['Score'])
|
| 224 |
+
# print(HighestSimilarity)
|
| 225 |
+
# print(GreenLikelihood)
|
| 226 |
+
# return predictions, HighestSimilarity, GreenLikelihood
|