Spaces:
Running
Running
update
Browse files- README.md +1 -1
- app.py +57 -45
- model_cards/article.md +24 -19
- model_cards/description.md +1 -1
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: GT4SD -
|
| 3 |
emoji: 💡
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
|
|
|
| 1 |
---
|
| 2 |
+
title: GT4SD - HuggingFace text generators
|
| 3 |
emoji: 💡
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
app.py
CHANGED
|
@@ -2,40 +2,61 @@ import logging
|
|
| 2 |
import pathlib
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
-
from gt4sd.algorithms.
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
from gt4sd.algorithms.registry import ApplicationsRegistry
|
| 10 |
|
| 11 |
-
from utils import draw_grid_generate
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
logger.addHandler(logging.NullHandler())
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def run_inference(
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
primer_smiles: str,
|
| 21 |
length: float,
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
):
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
-
model = AdvancedManufacturing(config, target=target_binding_energy)
|
| 35 |
-
samples = list(model.sample(number_of_samples))
|
| 36 |
-
seeds = [] if primer_smiles == "" else [primer_smiles]
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
|
@@ -43,10 +64,8 @@ if __name__ == "__main__":
|
|
| 43 |
# Preparation (retrieve all available algorithms)
|
| 44 |
all_algos = ApplicationsRegistry.list_available()
|
| 45 |
algos = [
|
| 46 |
-
x["algorithm_version"]
|
| 47 |
-
for x in list(
|
| 48 |
-
filter(lambda x: "AdvancedManufact" in x["algorithm_name"], all_algos)
|
| 49 |
-
)
|
| 50 |
]
|
| 51 |
|
| 52 |
# Load metadata
|
|
@@ -64,39 +83,32 @@ if __name__ == "__main__":
|
|
| 64 |
|
| 65 |
demo = gr.Interface(
|
| 66 |
fn=run_inference,
|
| 67 |
-
title="
|
| 68 |
inputs=[
|
| 69 |
gr.Dropdown(
|
| 70 |
algos,
|
| 71 |
-
label="
|
| 72 |
-
value="
|
| 73 |
),
|
| 74 |
-
gr.Slider(minimum=1, maximum=100, value=10, label="Target binding energy"),
|
| 75 |
gr.Textbox(
|
| 76 |
-
label="
|
| 77 |
-
placeholder="
|
| 78 |
lines=1,
|
| 79 |
),
|
|
|
|
| 80 |
gr.Slider(
|
| 81 |
-
minimum=5,
|
| 82 |
-
maximum=400,
|
| 83 |
-
value=100,
|
| 84 |
-
label="Maximal sequence length",
|
| 85 |
-
step=1,
|
| 86 |
-
),
|
| 87 |
-
gr.Slider(
|
| 88 |
-
minimum=16, maximum=128, value=32, label="Number of points", step=1
|
| 89 |
),
|
| 90 |
-
gr.
|
| 91 |
-
|
| 92 |
-
),
|
| 93 |
-
gr.Slider(
|
| 94 |
-
minimum=1, maximum=50, value=10, label="Number of samples", step=1
|
| 95 |
),
|
|
|
|
|
|
|
|
|
|
| 96 |
],
|
| 97 |
-
outputs=gr.
|
| 98 |
article=article,
|
| 99 |
description=description,
|
| 100 |
-
|
| 101 |
)
|
| 102 |
demo.launch(debug=True, show_error=True)
|
|
|
|
| 2 |
import pathlib
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
+
from gt4sd.algorithms.generation.hugging_face import (
|
| 6 |
+
HuggingFaceCTRLGenerator,
|
| 7 |
+
HuggingFaceGenerationAlgorithm,
|
| 8 |
+
HuggingFaceGPT2Generator,
|
| 9 |
+
HuggingFaceTransfoXLGenerator,
|
| 10 |
+
HuggingFaceOpenAIGPTGenerator,
|
| 11 |
+
HuggingFaceXLMGenerator,
|
| 12 |
+
HuggingFaceXLNetGenerator,
|
| 13 |
)
|
| 14 |
from gt4sd.algorithms.registry import ApplicationsRegistry
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
logger.addHandler(logging.NullHandler())
|
| 19 |
|
| 20 |
+
MODEL_FN = {
|
| 21 |
+
"HuggingFaceCTRLGenerator": HuggingFaceCTRLGenerator,
|
| 22 |
+
"HuggingFaceGPT2Generator": HuggingFaceGPT2Generator,
|
| 23 |
+
"HuggingFaceTransfoXLGenerator": HuggingFaceTransfoXLGenerator,
|
| 24 |
+
"HuggingFaceOpenAIGPTGenerator": HuggingFaceOpenAIGPTGenerator,
|
| 25 |
+
"HuggingFaceXLMGenerator": HuggingFaceXLMGenerator,
|
| 26 |
+
"HuggingFaceXLNetGenerator": HuggingFaceXLNetGenerator,
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
|
| 30 |
def run_inference(
|
| 31 |
+
model_type: str,
|
| 32 |
+
prompt: str,
|
|
|
|
| 33 |
length: float,
|
| 34 |
+
temperature: float,
|
| 35 |
+
prefix: str,
|
| 36 |
+
k: float,
|
| 37 |
+
p: float,
|
| 38 |
+
repetition_penalty: float,
|
| 39 |
):
|
| 40 |
+
model = model_type.split("_")[0]
|
| 41 |
+
version = model_type.split("_")[1]
|
| 42 |
|
| 43 |
+
if model not in MODEL_FN.keys():
|
| 44 |
+
raise ValueError(f"Model type {model} not supported")
|
| 45 |
+
config = MODEL_FN[model](
|
| 46 |
+
algorithm_version=version,
|
| 47 |
+
prompt=prompt,
|
| 48 |
+
length=length,
|
| 49 |
+
temperature=temperature,
|
| 50 |
+
repetition_penalty=repetition_penalty,
|
| 51 |
+
k=k,
|
| 52 |
+
p=p,
|
| 53 |
+
prefix=prefix,
|
| 54 |
)
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
model = HuggingFaceGenerationAlgorithm(config)
|
| 57 |
+
text = list(model.sample(1))[0]
|
| 58 |
+
|
| 59 |
+
return text
|
| 60 |
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
|
|
|
| 64 |
# Preparation (retrieve all available algorithms)
|
| 65 |
all_algos = ApplicationsRegistry.list_available()
|
| 66 |
algos = [
|
| 67 |
+
x["algorithm_application"] + "_" + x["algorithm_version"]
|
| 68 |
+
for x in list(filter(lambda x: "HuggingFace" in x["algorithm_name"], all_algos))
|
|
|
|
|
|
|
| 69 |
]
|
| 70 |
|
| 71 |
# Load metadata
|
|
|
|
| 83 |
|
| 84 |
demo = gr.Interface(
|
| 85 |
fn=run_inference,
|
| 86 |
+
title="HuggingFace language models",
|
| 87 |
inputs=[
|
| 88 |
gr.Dropdown(
|
| 89 |
algos,
|
| 90 |
+
label="Language model",
|
| 91 |
+
value="HuggingFaceGPT2Generator",
|
| 92 |
),
|
|
|
|
| 93 |
gr.Textbox(
|
| 94 |
+
label="Text prompt",
|
| 95 |
+
placeholder="I'm a stochastic parrot.",
|
| 96 |
lines=1,
|
| 97 |
),
|
| 98 |
+
gr.Slider(minimum=5, maximum=100, value=20, label="Maximal length", step=1),
|
| 99 |
gr.Slider(
|
| 100 |
+
minimum=0.6, maximum=1.5, value=1.1, label="Decoding temperature"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
),
|
| 102 |
+
gr.Textbox(
|
| 103 |
+
label="Prefix", placeholder="Some prefix (before the prompt)", lines=1
|
|
|
|
|
|
|
|
|
|
| 104 |
),
|
| 105 |
+
gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1),
|
| 106 |
+
gr.Slider(minimum=0.5, maximum=1, value=1.0, label="Decoding-p", step=1),
|
| 107 |
+
gr.Slider(minimum=0.5, maximum=5, value=1.0, label="Repetition penalty"),
|
| 108 |
],
|
| 109 |
+
outputs=gr.Textbox(label="Output"),
|
| 110 |
article=article,
|
| 111 |
description=description,
|
| 112 |
+
examples=examples.values.tolist(),
|
| 113 |
)
|
| 114 |
demo.launch(debug=True, show_error=True)
|
model_cards/article.md
CHANGED
|
@@ -1,54 +1,60 @@
|
|
| 1 |
# Model documentation & parameters
|
| 2 |
|
| 3 |
-
**
|
| 4 |
|
| 5 |
-
**
|
| 6 |
|
| 7 |
-
**
|
| 8 |
|
| 9 |
-
**
|
| 10 |
|
| 11 |
-
**
|
| 12 |
|
| 13 |
-
**
|
| 14 |
|
| 15 |
-
**
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
-
# Model card -- AdvancedManufacturing
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
**
|
| 24 |
|
| 25 |
-
**
|
| 26 |
|
| 27 |
-
**
|
| 28 |
|
| 29 |
-
**Model
|
| 30 |
|
| 31 |
-
**Model type**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
|
| 34 |
N.A.
|
| 35 |
|
| 36 |
**Paper or other resource for more information**:
|
| 37 |
-
|
| 38 |
|
| 39 |
**License**: MIT
|
| 40 |
|
| 41 |
**Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
|
| 42 |
|
| 43 |
-
**Intended Use. Use cases that were envisioned during development**:
|
| 44 |
|
| 45 |
-
**Primary intended uses/users**:
|
| 46 |
|
| 47 |
**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
|
| 48 |
|
| 49 |
**Metrics**: N.A.
|
| 50 |
|
| 51 |
-
**Datasets**:
|
| 52 |
|
| 53 |
**Ethical Considerations**: Unclear, please consult with original authors in case of questions.
|
| 54 |
|
|
@@ -57,7 +63,6 @@ TBD
|
|
| 57 |
Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
|
| 58 |
|
| 59 |
## Citation
|
| 60 |
-
TBD, temporarily please cite:
|
| 61 |
```bib
|
| 62 |
@article{manica2022gt4sd,
|
| 63 |
title={GT4SD: Generative Toolkit for Scientific Discovery},
|
|
|
|
| 1 |
# Model documentation & parameters
|
| 2 |
|
| 3 |
+
**Language model**: Type of language model to be used.
|
| 4 |
|
| 5 |
+
**Text prompt**: The text prompt to condition the model.
|
| 6 |
|
| 7 |
+
**Maximal length**: The maximal number of SMILES tokens in the generated molecule.
|
| 8 |
|
| 9 |
+
**Decoding temperature**: The temperature in the beam search decoding.
|
| 10 |
|
| 11 |
+
**Prefix**: A text prompt that will be passed to the mode **before** the prompt.
|
| 12 |
|
| 13 |
+
**Top-k**: Number of top-k probability tokens to keep.
|
| 14 |
|
| 15 |
+
**Decoding-p**: Only tokens with cumulative probabilities summing up to this value are kept.
|
| 16 |
|
| 17 |
+
**Repetition penalty**: Penalty for repeating tokens. Leave unchanged, but for CTRL model, use 1.2.
|
| 18 |
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
+
# Model card -- HuggingFace
|
| 22 |
|
| 23 |
+
**Model Details**: Various Transformer-based language models.
|
| 24 |
|
| 25 |
+
**Developers**: HuggingFace developers
|
| 26 |
|
| 27 |
+
**Distributors**: HuggingFace developers' code integrated into GT4SD.
|
| 28 |
|
| 29 |
+
**Model date**: Varies between models.
|
| 30 |
|
| 31 |
+
**Model type**: Different types of `transformers` language models:
|
| 32 |
+
- CTRL: `CTRLLMHeadModel`
|
| 33 |
+
- GPT2: `GPT2LMHeadModel`
|
| 34 |
+
- XLNet: `XLNetLMHeadModel`
|
| 35 |
+
- OpenAIGPT: `OpenAIGPTLMHeadModel`
|
| 36 |
+
- TransfoXL: `TransfoXLLMHeadModel`
|
| 37 |
+
- XLM: `XLMWithLMHeadModel`
|
| 38 |
|
| 39 |
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
|
| 40 |
N.A.
|
| 41 |
|
| 42 |
**Paper or other resource for more information**:
|
| 43 |
+
All documentation available from [transformers documentation](https://huggingface.co/docs/transformers/)
|
| 44 |
|
| 45 |
**License**: MIT
|
| 46 |
|
| 47 |
**Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
|
| 48 |
|
| 49 |
+
**Intended Use. Use cases that were envisioned during development**: N.A.
|
| 50 |
|
| 51 |
+
**Primary intended uses/users**: N.A.
|
| 52 |
|
| 53 |
**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
|
| 54 |
|
| 55 |
**Metrics**: N.A.
|
| 56 |
|
| 57 |
+
**Datasets**: N.A.
|
| 58 |
|
| 59 |
**Ethical Considerations**: Unclear, please consult with original authors in case of questions.
|
| 60 |
|
|
|
|
| 63 |
Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
|
| 64 |
|
| 65 |
## Citation
|
|
|
|
| 66 |
```bib
|
| 67 |
@article{manica2022gt4sd,
|
| 68 |
title={GT4SD: Generative Toolkit for Scientific Discovery},
|
model_cards/description.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
<img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
For **examples** and **documentation** of the model parameters, please see below.
|
| 6 |
Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.
|
|
|
|
| 1 |
<img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
|
| 2 |
|
| 3 |
+
This UI gives access to some pretrained language models from [*HuggingFace*](https://github.com/huggingface/) that are distributed via GT4SD.
|
| 4 |
|
| 5 |
For **examples** and **documentation** of the model parameters, please see below.
|
| 6 |
Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.
|