Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -4,17 +4,25 @@ import pandas as pd
|
|
| 4 |
import ast
|
| 5 |
import numpy as np
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
# Set the option to opt into future behavior
|
| 9 |
pd.set_option('future.no_silent_downcasting', True)
|
| 10 |
|
| 11 |
# List of options for the dropdown
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
sex_option = sorted(['Male', 'Female'])
|
| 19 |
age = [0, 100]
|
| 20 |
capital_gain = [0, 99999]
|
|
@@ -126,9 +134,43 @@ def Salary(model, workclass, education, marital_status, occupation, relationship
|
|
| 126 |
# Make predictions with the loaded model
|
| 127 |
prediction = loaded_model.predict(formattedDF)
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
salary_result = '<=50K' if prediction[0] == 0 else '>50K'
|
| 130 |
|
| 131 |
-
return f"Predicted using {model_used} Salary Class: {salary_result}"
|
| 132 |
|
| 133 |
def Health(model, age, sex, bmi, children, smoker, region):
|
| 134 |
|
|
@@ -199,7 +241,44 @@ def Health(model, age, sex, bmi, children, smoker, region):
|
|
| 199 |
prediction = loaded_model.predict(formattedDF)[0]
|
| 200 |
prediction = inverse_mapping_charges[prediction]
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
# interface one
|
| 205 |
iface1 = gr.Interface(
|
|
@@ -218,8 +297,9 @@ iface1 = gr.Interface(
|
|
| 218 |
gr.Slider(minimum=capital_loss[0], maximum=capital_loss[1], step=1, label="Capital Loss"),
|
| 219 |
gr.Slider(minimum=hours_per_week[0], maximum=hours_per_week[1], step=1, label="Hours per Week"),
|
| 220 |
],
|
| 221 |
-
outputs="
|
| 222 |
-
title="SVM - Salary"
|
|
|
|
| 223 |
)
|
| 224 |
|
| 225 |
# interface two
|
|
@@ -234,8 +314,9 @@ iface2 = gr.Interface(
|
|
| 234 |
gr.Dropdown(choices=smoker_option, label="Smoker"),
|
| 235 |
gr.Dropdown(choices=region_option, label="Region"),
|
| 236 |
],
|
| 237 |
-
outputs="
|
| 238 |
-
title="SVM - Health"
|
|
|
|
| 239 |
)
|
| 240 |
|
| 241 |
demo = gr.TabbedInterface([iface1, iface2], ["Salary Prediction", "Health Charges Prediction"])
|
|
|
|
| 4 |
import ast
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
|
| 9 |
# Set the option to opt into future behavior
|
| 10 |
pd.set_option('future.no_silent_downcasting', True)
|
| 11 |
|
| 12 |
# List of options for the dropdown
|
| 13 |
+
|
| 14 |
+
[("SVM - Jerome Agius", 0), ("Logistic Regression - Isaac Muscat", 1), ("Random Forest - Kyle Demicoli", 2)]
|
| 15 |
+
|
| 16 |
+
workclass_options = [('State Government', 'State-gov'),
|
| 17 |
+
('Self Employed Not Incorporated', 'Self-emp-not-inc'),
|
| 18 |
+
'Private', ('Federal Government', 'Federal-gov'), ('Local Government', 'Local-gov'), ('Self Employed Incorporated', 'Self-emp-inc'), ('Without Pay', 'Without-pay')]
|
| 19 |
+
|
| 20 |
+
education_option = [('Pre-School', 'Preschool'), '1st-4th', '5th-6th', '7th-8th', '9th', '10th', '11th', '12th', ('High School Graduate', 'HS-grad'), ('Collage', 'Some-college'), ('Associate Degree - Vocational', 'Assoc-voc'), ('Associate Degree - Academic', 'Assoc-acdm'), 'Bachelors', 'Masters', ('Professional School', 'Prof-school'), 'Doctorate']
|
| 21 |
+
|
| 22 |
+
marital_status_option = [('Never Married','Never-married'), ('Married Civilian Spouse', 'Married-civ-spouse'), 'Divorced', 'Separated', ('Married Armed Forces Spouse', 'Married-AF-spouse'), 'Widowed', ('Married Spouse Absent', 'Married-spouse-absent')]
|
| 23 |
+
occupation_option = [('Administrative Clerical', 'Adm-clerical'), ('Executive Managerial', 'Exec-managerial'), ('Handlers and Cleaners', 'Handlers-cleaners'), ('Professional Specialty', 'Prof-specialty'), 'Sales', ('Farming and Fishing', 'Farming-fishing'), ('Machine Operator and Inspector', 'Machine-op-inspct'), ('Other Service', 'Other-service'), ('Transport and Moving', 'Transport-moving'), ('Technical Support', 'Tech-support'), ('Craft and Repair', 'Craft-repair'), ('Protective Services', 'Protective-serv'), ('Armed Forces', 'Armed-Forces'), ('Private Household Services' ,'Priv-house-serv')]
|
| 24 |
+
relationship_option = [('Not In Family', 'Not-in-family'), 'Husband', 'Wife', ('Biological Child', 'Own-child'), 'Unmarried', ('Other Relative', 'Other-relative')]
|
| 25 |
+
race_option = ['White', 'Black', 'Other', ('Asian', 'Asian-Pac-Islander'), ('Indian', 'Amer-Indian-Eskimo')]
|
| 26 |
sex_option = sorted(['Male', 'Female'])
|
| 27 |
age = [0, 100]
|
| 28 |
capital_gain = [0, 99999]
|
|
|
|
| 134 |
# Make predictions with the loaded model
|
| 135 |
prediction = loaded_model.predict(formattedDF)
|
| 136 |
|
| 137 |
+
probability = loaded_model.predict_proba(formattedDF)
|
| 138 |
+
|
| 139 |
+
# Get the number of classes
|
| 140 |
+
num_classes = probability.shape[1]
|
| 141 |
+
|
| 142 |
+
class_dict = {
|
| 143 |
+
0: '<=50K',
|
| 144 |
+
1: '>50K'
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
# Select the probabilities for a single sample (e.g., the first sample)
|
| 148 |
+
probabilities = probability[0]
|
| 149 |
+
|
| 150 |
+
class_labels = [class_dict[i] for i in range(num_classes)]
|
| 151 |
+
colors = plt.cm.viridis(np.linspace(0, 1, num_classes)) # Use a colormap for consistent colors
|
| 152 |
+
|
| 153 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 154 |
+
_, _, autotexts = ax.pie(probabilities, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=1.1)
|
| 155 |
+
|
| 156 |
+
# Create a legend with colored boxes
|
| 157 |
+
legend_elements = []
|
| 158 |
+
for i, (color, label) in enumerate(zip(colors, class_labels)):
|
| 159 |
+
legend_elements.append(plt.Rectangle((0, 0), 1, 1, color=color, label=label))
|
| 160 |
+
|
| 161 |
+
ax.legend(handles=legend_elements, loc='upper left')
|
| 162 |
+
ax.set_title("Predicted Class Probabilities")
|
| 163 |
+
|
| 164 |
+
for i, p in enumerate(probabilities):
|
| 165 |
+
prob = float(round(p*100, 2))
|
| 166 |
+
if prob > 0:
|
| 167 |
+
autotexts[i].set_text(f"{prob}%")
|
| 168 |
+
else:
|
| 169 |
+
autotexts[i].set_text('')
|
| 170 |
+
|
| 171 |
salary_result = '<=50K' if prediction[0] == 0 else '>50K'
|
| 172 |
|
| 173 |
+
return f"Predicted using {model_used} Salary Class: {salary_result}", fig
|
| 174 |
|
| 175 |
def Health(model, age, sex, bmi, children, smoker, region):
|
| 176 |
|
|
|
|
| 241 |
prediction = loaded_model.predict(formattedDF)[0]
|
| 242 |
prediction = inverse_mapping_charges[prediction]
|
| 243 |
|
| 244 |
+
probability = loaded_model.predict_proba(formattedDF)
|
| 245 |
+
|
| 246 |
+
# Get the number of classes
|
| 247 |
+
num_classes = probability.shape[1]
|
| 248 |
+
|
| 249 |
+
class_dict = {
|
| 250 |
+
0: 'Very Low (<= 5000)',
|
| 251 |
+
1: 'Low (5001 - 10000)',
|
| 252 |
+
2: 'Moderate (10001 - 15000)',
|
| 253 |
+
3: 'High (15001 - 20000)',
|
| 254 |
+
4: 'Very High (> 20001)',
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
# Select the probabilities for a single sample (e.g., the first sample)
|
| 258 |
+
probabilities = probability[0]
|
| 259 |
+
|
| 260 |
+
class_labels = [class_dict[i] for i in range(num_classes)]
|
| 261 |
+
colors = plt.cm.viridis(np.linspace(0, 1, num_classes)) # Use a colormap for consistent colors
|
| 262 |
+
|
| 263 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 264 |
+
_, _, autotexts = ax.pie(probabilities, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=1.1)
|
| 265 |
+
|
| 266 |
+
# Create a legend with colored boxes
|
| 267 |
+
legend_elements = []
|
| 268 |
+
for i, (color, label) in enumerate(zip(colors, class_labels)):
|
| 269 |
+
legend_elements.append(plt.Rectangle((0, 0), 1, 1, color=color, label=label))
|
| 270 |
+
|
| 271 |
+
ax.legend(handles=legend_elements, loc='upper left')
|
| 272 |
+
ax.set_title("Predicted Class Probabilities")
|
| 273 |
+
|
| 274 |
+
for i, p in enumerate(probabilities):
|
| 275 |
+
prob = float(round(p*100, 2))
|
| 276 |
+
if prob > 0:
|
| 277 |
+
autotexts[i].set_text(f"{prob}%")
|
| 278 |
+
else:
|
| 279 |
+
autotexts[i].set_text('')
|
| 280 |
+
|
| 281 |
+
return f"Predicted using {model_used} Charges Class: {prediction}", fig
|
| 282 |
|
| 283 |
# interface one
|
| 284 |
iface1 = gr.Interface(
|
|
|
|
| 297 |
gr.Slider(minimum=capital_loss[0], maximum=capital_loss[1], step=1, label="Capital Loss"),
|
| 298 |
gr.Slider(minimum=hours_per_week[0], maximum=hours_per_week[1], step=1, label="Hours per Week"),
|
| 299 |
],
|
| 300 |
+
outputs=[gr.Text(label="Predicted Label"), gr.Plot(label="Predicted Class Probabilities")],
|
| 301 |
+
title="SVM - Salary",
|
| 302 |
+
flagging_mode="never"
|
| 303 |
)
|
| 304 |
|
| 305 |
# interface two
|
|
|
|
| 314 |
gr.Dropdown(choices=smoker_option, label="Smoker"),
|
| 315 |
gr.Dropdown(choices=region_option, label="Region"),
|
| 316 |
],
|
| 317 |
+
outputs=[gr.Text(label="Predicted Label"), gr.Plot(label="Predicted Class Probabilities")],
|
| 318 |
+
title="SVM - Health",
|
| 319 |
+
flagging_mode="never"
|
| 320 |
)
|
| 321 |
|
| 322 |
demo = gr.TabbedInterface([iface1, iface2], ["Salary Prediction", "Health Charges Prediction"])
|