Update app.py
Browse files
app.py
CHANGED
|
@@ -1,178 +1,154 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
import io
|
| 8 |
import time
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
try:
|
| 27 |
-
print("Loading SNAC model...")
|
| 28 |
start_time = time.time()
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
print(f"FATAL: Error loading SNAC model: {e}")
|
| 36 |
-
print(traceback.format_exc())
|
| 37 |
-
# If the model fails to load, the app can't function.
|
| 38 |
-
# Gradio will likely show an error, but we print specifics here.
|
| 39 |
-
|
| 40 |
-
# --- Main Processing Function ---
|
| 41 |
-
def process_audio(audio_filepath):
|
| 42 |
-
"""
|
| 43 |
-
Loads, resamples, encodes, decodes audio using SNAC, and returns results.
|
| 44 |
-
"""
|
| 45 |
-
if snac_model is None:
|
| 46 |
-
return None, None, None, "Error: SNAC model could not be loaded. Cannot process audio."
|
| 47 |
-
|
| 48 |
-
if audio_filepath is None:
|
| 49 |
-
return None, None, None, "Please upload an audio file."
|
| 50 |
-
|
| 51 |
-
logs = ["--- Starting Audio Processing ---"]
|
| 52 |
try:
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Ensure float32
|
| 61 |
-
original_waveform = original_waveform.to(dtype=torch.float32)
|
| 62 |
-
|
| 63 |
-
# Handle multi-channel audio: Use the first channel
|
| 64 |
-
if original_waveform.shape[0] > 1:
|
| 65 |
-
logs.append(f"Warning: Input audio has {original_waveform.shape[0]} channels. Using only the first channel.")
|
| 66 |
-
original_waveform = original_waveform[0:1, :] # Keep channel dim for consistency initially
|
| 67 |
-
|
| 68 |
-
# --- Prepare Original for Playback ---
|
| 69 |
-
# Gradio Audio component expects (sample_rate, numpy_array)
|
| 70 |
-
# Ensure numpy array is 1D or 2D [channels, samples]
|
| 71 |
-
original_audio_playback = (original_sr, original_waveform.squeeze().numpy()) # Squeeze removes channel dim if 1
|
| 72 |
-
logs.append("Prepared original audio for playback.")
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# 2. Resample if necessary
|
| 76 |
-
resample_start = time.time()
|
| 77 |
-
if original_sr != TARGET_SR:
|
| 78 |
-
logs.append(f"Resampling waveform from {original_sr} Hz to {TARGET_SR} Hz...")
|
| 79 |
-
resampler = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR).to(original_waveform.device) # Resampler on same device
|
| 80 |
-
waveform_to_encode = resampler(original_waveform)
|
| 81 |
-
logs.append(f"Resampling complete. New Shape: {waveform_to_encode.shape}")
|
| 82 |
else:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
4. These codes are then decoded back into audio by SNAC.
|
| 149 |
-
5. You can listen to the original, the 24kHz version (if resampled), and the final reconstructed audio.
|
| 150 |
-
|
| 151 |
-
**Note:** Processing happens on the server. Larger files will take longer. If the input is stereo, only the first channel is processed.
|
| 152 |
"""
|
| 153 |
|
| 154 |
iface = gr.Interface(
|
| 155 |
-
fn=
|
| 156 |
-
inputs=gr.Audio(
|
| 157 |
outputs=[
|
| 158 |
-
gr.
|
| 159 |
-
gr.
|
| 160 |
-
gr.Audio(label="Reconstructed Audio (Output from SNAC)"),
|
| 161 |
-
gr.Textbox(label="Log Output", lines=15)
|
| 162 |
-
],
|
| 163 |
-
title="SNAC Audio Codec Demo (24kHz)",
|
| 164 |
-
description=DESCRIPTION,
|
| 165 |
-
examples=[
|
| 166 |
-
# Add paths to example audio files if you upload some to your Space repo
|
| 167 |
-
# ["examples/example1.wav"],
|
| 168 |
-
# ["examples/example2.mp3"],
|
| 169 |
],
|
| 170 |
-
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
-
|
| 175 |
-
print("Cannot launch Gradio interface because SNAC model failed to load.")
|
| 176 |
-
else:
|
| 177 |
-
print("Launching Gradio Interface...")
|
| 178 |
-
iface.launch()
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, BitsAndBytesConfig
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import os
|
|
|
|
| 6 |
import time
|
| 7 |
+
import numpy as np
|
| 8 |
|
| 9 |
+
# Load model and processor (runs once on startup)
|
| 10 |
+
model_name = "ibm-granite/granite-speech-3.2-8b"
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"Using device: {device}")
|
| 13 |
+
|
| 14 |
+
print("Loading processor...")
|
| 15 |
+
speech_granite_processor = AutoProcessor.from_pretrained(
|
| 16 |
+
model_name, trust_remote_code=True)
|
| 17 |
+
tokenizer = speech_granite_processor.tokenizer
|
| 18 |
+
|
| 19 |
+
print("Loading model with 4-bit quantization...")
|
| 20 |
+
quantization_config = BitsAndBytesConfig(
|
| 21 |
+
load_in_4bit=True,
|
| 22 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 23 |
+
bnb_4bit_quant_type="nf4",
|
| 24 |
+
bnb_4bit_use_double_quant=True
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
speech_granite = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 28 |
+
model_name,
|
| 29 |
+
quantization_config=quantization_config,
|
| 30 |
+
device_map="auto",
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
print("Model loaded successfully")
|
| 34 |
|
| 35 |
+
def transcribe_audio(audio_input):
|
| 36 |
+
"""Process audio input and return transcription"""
|
|
|
|
|
|
|
| 37 |
start_time = time.time()
|
| 38 |
+
|
| 39 |
+
logs = [f"Audio input received: {type(audio_input)}"]
|
| 40 |
+
|
| 41 |
+
if audio_input is None:
|
| 42 |
+
return "Error: No audio provided.", 0.0
|
| 43 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
+
# Handle different audio input formats
|
| 46 |
+
if isinstance(audio_input, tuple) and len(audio_input) == 2:
|
| 47 |
+
# Microphone input: (sample_rate, numpy_array)
|
| 48 |
+
logs.append("Processing microphone input")
|
| 49 |
+
sr, wav_np = audio_input
|
| 50 |
+
wav = torch.from_numpy(wav_np).float().unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
+
# File input: filepath string
|
| 53 |
+
logs.append(f"Processing file input: {audio_input}")
|
| 54 |
+
wav, sr = torchaudio.load(audio_input)
|
| 55 |
+
logs.append(f"Loaded audio file with sample rate {sr}Hz and shape {wav.shape}")
|
| 56 |
+
|
| 57 |
+
# Convert to mono if stereo
|
| 58 |
+
if wav.shape[0] > 1:
|
| 59 |
+
wav = torch.mean(wav, dim=0, keepdim=True)
|
| 60 |
+
logs.append("Converted stereo to mono")
|
| 61 |
+
|
| 62 |
+
# Resample to 16kHz if needed
|
| 63 |
+
if sr != 16000:
|
| 64 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
|
| 65 |
+
wav = resampler(wav)
|
| 66 |
+
sr = 16000
|
| 67 |
+
logs.append(f"Resampled to {sr}Hz")
|
| 68 |
+
|
| 69 |
+
logs.append(f"Final audio: sample rate {sr}Hz, shape {wav.shape}, min: {wav.min().item()}, max: {wav.max().item()}")
|
| 70 |
+
|
| 71 |
+
# Create text prompt
|
| 72 |
+
chat = [
|
| 73 |
+
{
|
| 74 |
+
"role": "system",
|
| 75 |
+
"content": "Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant",
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"role": "user",
|
| 79 |
+
"content": "<|audio|>can you transcribe the speech into a written format?",
|
| 80 |
+
}
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
text = tokenizer.apply_chat_template(
|
| 84 |
+
chat, tokenize=False, add_generation_prompt=True
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Compute audio embeddings
|
| 88 |
+
logs.append("Preparing model inputs")
|
| 89 |
+
model_inputs = speech_granite_processor(
|
| 90 |
+
text=text,
|
| 91 |
+
audio=wav.numpy().squeeze(), # Convert to numpy and squeeze
|
| 92 |
+
sampling_rate=sr,
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
).to(device)
|
| 95 |
+
|
| 96 |
+
# Generate transcription
|
| 97 |
+
logs.append("Generating transcription")
|
| 98 |
+
model_outputs = speech_granite.generate(
|
| 99 |
+
**model_inputs,
|
| 100 |
+
max_new_tokens=1000,
|
| 101 |
+
num_beams=4,
|
| 102 |
+
do_sample=False,
|
| 103 |
+
min_length=1,
|
| 104 |
+
top_p=1.0,
|
| 105 |
+
repetition_penalty=3.0,
|
| 106 |
+
length_penalty=1.0,
|
| 107 |
+
temperature=1.0,
|
| 108 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 109 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 110 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Extract the generated text (skipping input tokens)
|
| 114 |
+
logs.append("Processing output")
|
| 115 |
+
num_input_tokens = model_inputs["input_ids"].shape[-1]
|
| 116 |
+
new_tokens = torch.unsqueeze(model_outputs[0, num_input_tokens:], dim=0)
|
| 117 |
+
|
| 118 |
+
output_text = tokenizer.batch_decode(
|
| 119 |
+
new_tokens, add_special_tokens=False, skip_special_tokens=True
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
transcription = output_text[0].strip().upper()
|
| 123 |
+
logs.append(f"Transcription complete: {transcription[:50]}...")
|
| 124 |
+
|
| 125 |
except Exception as e:
|
| 126 |
+
import traceback
|
| 127 |
+
error_trace = traceback.format_exc()
|
| 128 |
+
print(error_trace)
|
| 129 |
+
print("\n".join(logs))
|
| 130 |
+
return f"Error: {str(e)}\n\nLogs:\n" + "\n".join(logs), 0.0
|
| 131 |
+
|
| 132 |
+
processing_time = round(time.time() - start_time, 2)
|
| 133 |
+
return transcription, processing_time
|
| 134 |
+
|
| 135 |
+
# Create Gradio interface
|
| 136 |
+
title = "IBM Granite Speech-to-Text (8B Quantized)"
|
| 137 |
+
description = """
|
| 138 |
+
Transcribe speech using IBM's Granite Speech 3.2 8B model (loaded in 4-bit).
|
| 139 |
+
Upload an audio file or use your microphone to record speech.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
"""
|
| 141 |
|
| 142 |
iface = gr.Interface(
|
| 143 |
+
fn=transcribe_audio,
|
| 144 |
+
inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
| 145 |
outputs=[
|
| 146 |
+
gr.Textbox(label="Transcription", lines=5),
|
| 147 |
+
gr.Number(label="Processing Time (seconds)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
],
|
| 149 |
+
title=title,
|
| 150 |
+
description=description,
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|