Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#############################################################################################################################
|
| 2 |
+
# Filename : app.py
|
| 3 |
+
# Description: A Streamlit application to turn an image to audio story.
|
| 4 |
+
# Author : Georgios Ioannou
|
| 5 |
+
#
|
| 6 |
+
# Copyright © 2024 by Georgios Ioannou
|
| 7 |
+
#############################################################################################################################
|
| 8 |
+
# Import libraries.
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import os # Load environment variable(s).
|
| 12 |
+
import requests # Send HTTP GET request to Hugging Face models for inference.
|
| 13 |
+
import streamlit as st # Build the GUI of the application.
|
| 14 |
+
|
| 15 |
+
from dotenv import find_dotenv, load_dotenv # Load environment variables.
|
| 16 |
+
from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model.
|
| 17 |
+
from langchain.chains import LLMChain # Chain to run queries against LLMs.
|
| 18 |
+
# A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model.
|
| 19 |
+
from langchain.prompts import PromptTemplate
|
| 20 |
+
from transformers import pipeline # Access to Hugging Face models.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
#############################################################################################################################
|
| 24 |
+
# Load environment variable(s).
|
| 25 |
+
|
| 26 |
+
load_dotenv(find_dotenv())
|
| 27 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#############################################################################################################################
|
| 31 |
+
# Function to apply local CSS.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def local_css(file_name):
|
| 35 |
+
with open(file_name) as f:
|
| 36 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
#############################################################################################################################
|
| 40 |
+
# Return the text generated by the model for the image.
|
| 41 |
+
# Using pipeline.
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def img_to_text(image_path):
|
| 45 |
+
# https://huggingface.co/tasks
|
| 46 |
+
# Task used here : "image-to-text".
|
| 47 |
+
# Model used here: "Salesforce/blip-image-captioning-base".
|
| 48 |
+
# Backup model: "nlpconnect/vit-gpt2-image-captioning".
|
| 49 |
+
|
| 50 |
+
image_to_text = pipeline(
|
| 51 |
+
"image-to-text", model="Salesforce/blip-image-captioning-base"
|
| 52 |
+
)
|
| 53 |
+
# image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 54 |
+
|
| 55 |
+
scenario = image_to_text(image_path)[0]["generated_text"]
|
| 56 |
+
|
| 57 |
+
return scenario
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
#############################################################################################################################
|
| 61 |
+
# Return the story generated by the model for the scenario.
|
| 62 |
+
# Using Langchain.
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def generate_story(scenario, personality):
|
| 66 |
+
# Model used here: "gpt-3.5-turbo".
|
| 67 |
+
|
| 68 |
+
# The template can be customized to meet one's needs such as:
|
| 69 |
+
# Generate a story and generate lyrics of a song.
|
| 70 |
+
|
| 71 |
+
template = """
|
| 72 |
+
You are a story teller.
|
| 73 |
+
You must sound like {personality}.
|
| 74 |
+
The story should be less than 50 words.
|
| 75 |
+
Generate a story based on the above constraints and the following scenario: {scenario}.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
prompt = PromptTemplate(
|
| 79 |
+
template=template, input_variables=["scenario", "personality"]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
story_llm = LLMChain(
|
| 83 |
+
llm=ChatOpenAI(
|
| 84 |
+
model_name="gpt-3.5-turbo", temperature=0
|
| 85 |
+
), # Increasing the temperature, the model becomes more creative and takes longer for inference.
|
| 86 |
+
prompt=prompt,
|
| 87 |
+
verbose=True, # Print intermediate values to the console.
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
story = story_llm.predict(
|
| 91 |
+
scenario=scenario, personality=personality
|
| 92 |
+
) # Format prompt with kwargs and pass to LLM.
|
| 93 |
+
|
| 94 |
+
return story
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
#############################################################################################################################
|
| 98 |
+
# Return the speech generated by the model for the story.
|
| 99 |
+
# Using inference api.
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def text_to_speech(story):
|
| 103 |
+
# Model used here: "espnet/kan-bayashi_ljspeech_vits.
|
| 104 |
+
# Backup model: "facebook/mms-tts-eng".
|
| 105 |
+
|
| 106 |
+
API_URL = (
|
| 107 |
+
"https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
| 108 |
+
)
|
| 109 |
+
# API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng"
|
| 110 |
+
|
| 111 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
| 112 |
+
|
| 113 |
+
payload = {"inputs": story}
|
| 114 |
+
|
| 115 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 116 |
+
|
| 117 |
+
with open("audio.flac", "wb") as file:
|
| 118 |
+
file.write(response.content)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
#############################################################################################################################
|
| 122 |
+
# Main function to create the Streamlit web application.
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def main():
|
| 126 |
+
try:
|
| 127 |
+
# Page title and favicon.
|
| 128 |
+
|
| 129 |
+
st.set_page_config(page_title="Image To Audio Story", page_icon="🖼️")
|
| 130 |
+
|
| 131 |
+
# Load CSS.
|
| 132 |
+
|
| 133 |
+
local_css("styles/style.css")
|
| 134 |
+
|
| 135 |
+
# Title.
|
| 136 |
+
|
| 137 |
+
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -6rem">
|
| 138 |
+
Turn Image to Audio Story</h1>"""
|
| 139 |
+
st.markdown(title, unsafe_allow_html=True)
|
| 140 |
+
|
| 141 |
+
# Define the personalities for the dropdown menu.
|
| 142 |
+
|
| 143 |
+
personalities = [
|
| 144 |
+
"Donald Trump",
|
| 145 |
+
"Abraham Lincoln",
|
| 146 |
+
"Aristotle",
|
| 147 |
+
"Cardi B",
|
| 148 |
+
"Kanye West",
|
| 149 |
+
]
|
| 150 |
+
personality = st.selectbox("Select a personality:", personalities)
|
| 151 |
+
|
| 152 |
+
# Upload an image.
|
| 153 |
+
|
| 154 |
+
uploaded_file = st.file_uploader("Choose an image:")
|
| 155 |
+
|
| 156 |
+
if uploaded_file is not None:
|
| 157 |
+
# Display the uploaded image.
|
| 158 |
+
|
| 159 |
+
bytes_data = uploaded_file.getvalue()
|
| 160 |
+
with open(uploaded_file.name, "wb") as file:
|
| 161 |
+
file.write(bytes_data)
|
| 162 |
+
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
|
| 163 |
+
|
| 164 |
+
with st.spinner(text="Model Inference..."): # Spinner to keep the application interactive.
|
| 165 |
+
# Model inference.
|
| 166 |
+
|
| 167 |
+
scenario = img_to_text(uploaded_file.name)
|
| 168 |
+
story = generate_story(scenario=scenario, personality=personality)
|
| 169 |
+
text_to_speech(story)
|
| 170 |
+
|
| 171 |
+
# Display the scenario and story.
|
| 172 |
+
|
| 173 |
+
with st.expander("Scenario"):
|
| 174 |
+
st.write(scenario)
|
| 175 |
+
with st.expander("Story"):
|
| 176 |
+
st.write(story)
|
| 177 |
+
|
| 178 |
+
# Display the audio.
|
| 179 |
+
|
| 180 |
+
st.audio("audio.flac")
|
| 181 |
+
except Exception as e:
|
| 182 |
+
# Display any errors.
|
| 183 |
+
|
| 184 |
+
st.error(e)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
#############################################################################################################################
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
main()
|