File size: 7,216 Bytes
4851501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Catalog Management Endpoints

Provides API for viewing and enriching the data catalog.
"""

from fastapi import APIRouter, HTTPException, BackgroundTasks
from pydantic import BaseModel
from typing import List, Optional, Dict, Any

router = APIRouter()


class CatalogStatsResponse(BaseModel):
    total_datasets: int
    enriched_datasets: int
    by_category: Dict[str, int]
    by_tag: Dict[str, int]


class TableMetadataResponse(BaseModel):
    name: str
    path: str
    description: str
    semantic_description: Optional[str]
    tags: List[str]
    data_type: str
    columns: List[str]
    row_count: Optional[int]
    category: str
    last_indexed: Optional[str]
    last_enriched: Optional[str]


class EnrichmentRequest(BaseModel):
    table_names: Optional[List[str]] = None  # None = all tables
    force_refresh: bool = False


class EnrichmentResponse(BaseModel):
    status: str
    message: str
    tables_queued: int


@router.get("/stats", response_model=CatalogStatsResponse)
async def get_catalog_stats():
    """Get statistics about the data catalog."""
    from backend.core.data_catalog import get_data_catalog
    
    catalog = get_data_catalog()
    stats = catalog.get_stats()
    
    return CatalogStatsResponse(
        total_datasets=stats["total_datasets"],
        enriched_datasets=stats.get("enriched_datasets", 0),
        by_category=stats["by_category"],
        by_tag=stats["by_tag"]
    )


@router.get("/tables", response_model=List[TableMetadataResponse])
async def list_catalog_tables():
    """List all tables in the catalog with their metadata."""
    from backend.core.data_catalog import get_data_catalog
    
    catalog = get_data_catalog()
    tables = []
    
    for name, meta in catalog.catalog.items():
        tables.append(TableMetadataResponse(
            name=name,
            path=meta.get("path", ""),
            description=meta.get("description", ""),
            semantic_description=meta.get("semantic_description"),
            tags=meta.get("tags", []),
            data_type=meta.get("data_type", "static"),
            columns=meta.get("columns", []),
            row_count=meta.get("row_count"),
            category=meta.get("category", "unknown"),
            last_indexed=meta.get("last_indexed"),
            last_enriched=meta.get("last_enriched")
        ))
    
    return tables


@router.get("/tables/{table_name}", response_model=TableMetadataResponse)
async def get_table_metadata(table_name: str):
    """Get metadata for a specific table."""
    from backend.core.data_catalog import get_data_catalog
    
    catalog = get_data_catalog()
    meta = catalog.get_table_metadata(table_name)
    
    if not meta:
        raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found")
    
    return TableMetadataResponse(
        name=table_name,
        path=meta.get("path", ""),
        description=meta.get("description", ""),
        semantic_description=meta.get("semantic_description"),
        tags=meta.get("tags", []),
        data_type=meta.get("data_type", "static"),
        columns=meta.get("columns", []),
        row_count=meta.get("row_count"),
        category=meta.get("category", "unknown"),
        last_indexed=meta.get("last_indexed"),
        last_enriched=meta.get("last_enriched")
    )


@router.post("/enrich", response_model=EnrichmentResponse)
async def enrich_catalog(request: EnrichmentRequest, background_tasks: BackgroundTasks):
    """
    Trigger LLM enrichment for catalog tables.
    
    Enrichment generates semantic descriptions and refined tags.
    Runs in the background to avoid blocking.
    """
    from backend.core.data_catalog import get_data_catalog
    
    catalog = get_data_catalog()
    
    if request.table_names:
        # Validate table names
        invalid = [t for t in request.table_names if t not in catalog.catalog]
        if invalid:
            raise HTTPException(
                status_code=400, 
                detail=f"Unknown tables: {invalid}"
            )
        tables_to_enrich = request.table_names
    else:
        tables_to_enrich = list(catalog.catalog.keys())
    
    # Queue enrichment in background
    async def run_enrichment():
        for table_name in tables_to_enrich:
            await catalog.enrich_table(table_name, request.force_refresh)
    
    background_tasks.add_task(run_enrichment)
    
    return EnrichmentResponse(
        status="queued",
        message=f"Enrichment started for {len(tables_to_enrich)} tables",
        tables_queued=len(tables_to_enrich)
    )


@router.post("/enrich/{table_name}")
async def enrich_single_table(table_name: str, force: bool = False):
    """
    Immediately enrich a single table (synchronous).
    
    Use for testing or when you need the result right away.
    """
    from backend.core.data_catalog import get_data_catalog
    
    catalog = get_data_catalog()
    
    if table_name not in catalog.catalog:
        raise HTTPException(status_code=404, detail=f"Table '{table_name}' not found")
    
    success = await catalog.enrich_table(table_name, force)
    
    if success:
        meta = catalog.get_table_metadata(table_name)
        return {
            "status": "success",
            "table": table_name,
            "semantic_description": meta.get("semantic_description"),
            "tags": meta.get("tags", [])
        }
    else:
        raise HTTPException(status_code=500, detail=f"Failed to enrich table '{table_name}'")


@router.get("/search")
async def search_tables(query: str, top_k: int = 10):
    """
    Search for tables using semantic search.
    
    Returns the most relevant tables for a natural language query.
    """
    from backend.core.semantic_search import get_semantic_search
    from backend.core.data_catalog import get_data_catalog
    
    semantic = get_semantic_search()
    catalog = get_data_catalog()
    
    results = semantic.search(query, top_k=top_k)
    
    response = []
    for table_name, score in results:
        meta = catalog.get_table_metadata(table_name)
        if meta:
            response.append({
                "table": table_name,
                "score": round(score, 4),
                "description": meta.get("semantic_description") or meta.get("description"),
                "tags": meta.get("tags", [])
            })
    
    return {"query": query, "results": response}


@router.post("/rebuild-embeddings")
async def rebuild_embeddings():
    """
    Rebuild all semantic search embeddings from current catalog.
    
    Use after bulk enrichment or catalog updates.
    """
    from backend.core.semantic_search import get_semantic_search
    from backend.core.data_catalog import get_data_catalog
    
    semantic = get_semantic_search()
    catalog = get_data_catalog()
    
    # Force re-embed all tables
    count = 0
    for table_name, metadata in catalog.catalog.items():
        if semantic.embed_table(table_name, metadata):
            count += 1
    
    semantic._save_embeddings()
    
    return {
        "status": "success",
        "message": f"Rebuilt embeddings for {count} tables",
        "total_embeddings": len(semantic.embeddings)
    }