File size: 16,670 Bytes
4851501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
"""
Data Catalog Service
Manages metadata for all datasets available in the platform.
Supports semantic search integration for scalable discovery.
"""
import json
import duckdb
import logging
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional
logger = logging.getLogger(__name__)
# Tag inference rules for auto-tagging datasets
TAG_RULES = {
# Keywords in table name -> tags
"health": ["health", "facilities", "infrastructure"],
"hospital": ["health", "facilities", "medical"],
"clinic": ["health", "facilities", "medical"],
"school": ["education", "facilities", "infrastructure"],
"university": ["education", "facilities", "higher-education"],
"education": ["education", "facilities"],
"road": ["transportation", "infrastructure", "roads"],
"street": ["transportation", "infrastructure", "roads"],
"highway": ["transportation", "infrastructure", "roads"],
"airport": ["transportation", "infrastructure", "aviation"],
"port": ["transportation", "infrastructure", "maritime"],
"population": ["demographics", "census", "population"],
"census": ["demographics", "census", "statistics"],
"admin": ["administrative", "boundaries", "government"],
"district": ["administrative", "boundaries"],
"province": ["administrative", "boundaries"],
"corregimiento": ["administrative", "boundaries"],
"park": ["recreation", "green-space", "amenities"],
"water": ["hydrology", "natural-resources"],
"river": ["hydrology", "water"],
"forest": ["environment", "natural-resources", "land-cover"],
"building": ["infrastructure", "built-environment"],
"poi": ["points-of-interest", "amenities"],
}
class DataCatalog:
"""
Singleton service managing dataset metadata.
Features:
- Auto-discovery of GeoJSON files in data directories
- Schema inference from first record
- Auto-tagging based on naming conventions
- Integration with semantic search for scalable discovery
"""
_instance = None
DATA_DIR = Path(__file__).parent.parent / "data"
CATALOG_FILE = DATA_DIR / "catalog.json"
def __new__(cls):
if cls._instance is None:
cls._instance = super(DataCatalog, cls).__new__(cls)
cls._instance.initialized = False
return cls._instance
def __init__(self):
if self.initialized:
return
self.catalog: Dict[str, Any] = {}
self.load_catalog()
self.scan_and_update()
self._init_semantic_search()
self.initialized = True
def load_catalog(self):
"""Load catalog from JSON file."""
if self.CATALOG_FILE.exists():
try:
with open(self.CATALOG_FILE, 'r') as f:
self.catalog = json.load(f)
except Exception as e:
logger.error(f"Failed to load catalog: {e}")
self.catalog = {}
else:
self.catalog = {}
def save_catalog(self):
"""Save catalog to JSON file."""
try:
with open(self.CATALOG_FILE, 'w') as f:
json.dump(self.catalog, f, indent=2)
except Exception as e:
logger.error(f"Failed to save catalog: {e}")
def _infer_tags(self, table_name: str, columns: List[str]) -> List[str]:
"""Auto-generate tags based on table name and columns."""
tags = set()
name_lower = table_name.lower()
# Check table name against rules
for keyword, keyword_tags in TAG_RULES.items():
if keyword in name_lower:
tags.update(keyword_tags)
# Check columns for additional hints
columns_lower = [c.lower() for c in columns]
if any('pop' in c for c in columns_lower):
tags.add("population")
if any('area' in c for c in columns_lower):
tags.add("geographic")
if 'geom' in columns_lower or 'geometry' in columns_lower:
tags.add("spatial")
return list(tags)
def _infer_data_type(self, category: str, table_name: str) -> str:
"""Infer data type (static, semi-static, realtime)."""
# Base admin data is static
if category == "base":
return "static"
# OSM data is semi-static (updated periodically)
if category == "osm":
return "semi-static"
# HDX humanitarian data - varies
if category == "hdx":
return "semi-static"
# Census data is static
if "census" in table_name.lower():
return "static"
return "static"
def scan_and_update(self):
"""Scan data directories and update catalog with new files."""
logger.info("Scanning data directories...")
# Define directories to scan
subdirs = ['base', 'osm', 'inec', 'hdx', 'custom', 'overture', 'ms_buildings']
# Temporary connection for schema inference
con = duckdb.connect(':memory:')
con.install_extension('spatial')
con.load_extension('spatial')
updated = False
for subdir in subdirs:
dir_path = self.DATA_DIR / subdir
if not dir_path.exists():
continue
# Scan for both .geojson and .geojson.gz
for file_path in list(dir_path.glob('**/*.geojson')) + list(dir_path.glob('**/*.geojson.gz')):
table_name = file_path.name.replace('.geojson.gz', '').replace('.geojson', '').lower().replace('-', '_').replace(' ', '_')
# Check if file path changed (file moved/renamed)
existing = self.catalog.get(table_name)
rel_path = str(file_path.relative_to(self.DATA_DIR))
if existing and existing.get('path') == rel_path:
# Already indexed with same path, skip unless missing new fields
if 'tags' in existing and 'data_type' in existing:
continue
try:
logger.info(f"Indexing {table_name}...")
# Read first row to get columns
query = f"SELECT * FROM ST_Read('{file_path}') LIMIT 1"
df = con.execute(query).fetchdf()
columns = list(df.columns)
# Count rows (for metadata)
row_count_query = f"SELECT COUNT(*) FROM ST_Read('{file_path}')"
row_count = con.execute(row_count_query).fetchone()[0]
# Auto-generate tags
tags = self._infer_tags(table_name, columns)
# Infer data type
data_type = self._infer_data_type(subdir, table_name)
# Build catalog entry
self.catalog[table_name] = {
"path": rel_path,
"description": f"Data from {subdir}/{file_path.name}",
"semantic_description": None, # LLM-generated on demand
"tags": tags,
"data_type": data_type,
"update_frequency": None,
"columns": columns,
"row_count": row_count,
"category": subdir,
"format": "geojson",
"last_indexed": datetime.now().isoformat()
}
updated = True
except Exception as e:
logger.warning(f"Failed to index {file_path}: {e}")
con.close()
if updated:
self.save_catalog()
logger.info("Catalog updated.")
def _init_semantic_search(self):
"""Initialize semantic search with current catalog."""
try:
from backend.core.semantic_search import get_semantic_search
semantic = get_semantic_search()
# Embed all tables
new_embeddings = semantic.embed_all_tables(self.catalog)
if new_embeddings > 0:
logger.info(f"Created {new_embeddings} new semantic embeddings.")
except Exception as e:
logger.warning(f"Semantic search initialization failed: {e}")
def get_table_metadata(self, table_name: str) -> Optional[Dict]:
"""Get metadata for a specific table."""
return self.catalog.get(table_name)
def get_all_table_summaries(self) -> str:
"""
Returns a concise summary of all tables.
WARNING: This can be very large with many datasets.
Prefer using semantic_search.search() for discovery.
"""
summary = "Available Data Tables:\n"
# Group by category
by_category: Dict[str, List] = {}
for name, meta in self.catalog.items():
cat = meta.get('category', 'other')
if cat not in by_category:
by_category[cat] = []
by_category[cat].append((name, meta))
for cat, items in by_category.items():
summary += f"\n## {cat.upper()}\n"
for name, meta in items:
desc = meta.get('semantic_description') or meta.get('description', 'No description')
tags = meta.get('tags', [])
tag_str = f" [{', '.join(tags[:3])}]" if tags else ""
summary += f"- {name}: {desc}{tag_str}\n"
return summary
def get_summaries_for_tables(self, table_names: List[str]) -> str:
"""
Get summaries only for specified tables.
Used after semantic pre-filtering to build focused LLM context.
"""
summary = "Relevant Data Tables:\n\n"
for name in table_names:
meta = self.catalog.get(name)
if not meta:
continue
desc = meta.get('semantic_description') or meta.get('description', 'No description')
tags = meta.get('tags', [])
columns = meta.get('columns', [])[:10] # Limit columns
row_count = meta.get('row_count', 'unknown')
summary += f"### {name}\n"
summary += f"Description: {desc}\n"
if tags:
summary += f"Tags: {', '.join(tags)}\n"
summary += f"Columns: {', '.join(columns)}\n"
summary += f"Rows: {row_count}\n\n"
return summary
def get_specific_table_schemas(self, table_names: List[str]) -> str:
"""Returns detailed schema for specific tables."""
output = ""
for name in table_names:
meta = self.catalog.get(name)
if not meta:
continue
output += f"### {name}\n"
output += f"Description: {meta.get('description')}\n"
output += "Columns: " + ", ".join(meta.get('columns', [])) + "\n\n"
return output
def get_file_path(self, table_name: str) -> Optional[Path]:
"""Get absolute path for a table's data file."""
meta = self.catalog.get(table_name)
if meta and 'path' in meta:
return self.DATA_DIR / meta['path']
return None
def get_tables_by_tag(self, tag: str) -> List[str]:
"""Get all table names that have a specific tag."""
return [
name for name, meta in self.catalog.items()
if tag in meta.get('tags', [])
]
def get_tables_by_category(self, category: str) -> List[str]:
"""Get all table names in a specific category."""
return [
name for name, meta in self.catalog.items()
if meta.get('category') == category
]
def get_stats(self) -> dict:
"""Return statistics about the catalog."""
categories = {}
tags = {}
enriched_count = 0
for meta in self.catalog.values():
cat = meta.get('category', 'other')
categories[cat] = categories.get(cat, 0) + 1
if meta.get('semantic_description'):
enriched_count += 1
for tag in meta.get('tags', []):
tags[tag] = tags.get(tag, 0) + 1
return {
"total_datasets": len(self.catalog),
"enriched_datasets": enriched_count,
"by_category": categories,
"by_tag": dict(sorted(tags.items(), key=lambda x: -x[1])[:20]),
"catalog_file": str(self.CATALOG_FILE)
}
async def enrich_table(self, table_name: str, force_refresh: bool = False) -> bool:
"""
Enrich a single table with LLM-generated metadata.
Returns True if enrichment was successful.
"""
if table_name not in self.catalog:
logger.warning(f"Table {table_name} not found in catalog")
return False
metadata = self.catalog[table_name]
# Skip if already enriched (unless forced)
if not force_refresh and metadata.get('semantic_description'):
logger.info(f"Table {table_name} already enriched, skipping")
return True
try:
from backend.core.catalog_enricher import get_catalog_enricher
enricher = get_catalog_enricher()
# Get sample values for context
sample_values = await self._get_sample_values(table_name)
# Enrich
enriched = await enricher.enrich_table(table_name, metadata, sample_values, force_refresh)
# Update catalog
enriched['last_enriched'] = datetime.now().isoformat()
self.catalog[table_name] = enriched
self.save_catalog()
# Re-embed with new description
self._update_embedding(table_name, enriched)
logger.info(f"Successfully enriched {table_name}")
return True
except Exception as e:
logger.error(f"Failed to enrich {table_name}: {e}")
return False
async def enrich_all_tables(self, force_refresh: bool = False) -> Dict[str, bool]:
"""
Enrich all tables in the catalog.
Returns dict of table_name -> success status.
"""
results = {}
for table_name in self.catalog.keys():
success = await self.enrich_table(table_name, force_refresh)
results[table_name] = success
return results
async def _get_sample_values(self, table_name: str) -> Optional[Dict[str, str]]:
"""Get sample values from a table for enrichment context."""
try:
from backend.core.geo_engine import get_geo_engine
geo_engine = get_geo_engine()
# Ensure table is loaded
geo_engine.ensure_table_loaded(table_name)
# Get one row
result = geo_engine.con.execute(f"SELECT * FROM {table_name} LIMIT 1").fetchdf()
if len(result) > 0:
sample = {}
for col in result.columns:
if col != 'geom':
val = result[col].iloc[0]
if val is not None:
sample[col] = str(val)[:50] # Limit value length
return sample
except Exception as e:
logger.debug(f"Could not get sample values for {table_name}: {e}")
return None
def _update_embedding(self, table_name: str, metadata: Dict[str, Any]) -> None:
"""Update semantic search embedding for a table."""
try:
from backend.core.semantic_search import get_semantic_search
semantic = get_semantic_search()
semantic.embed_table(table_name, metadata)
semantic._save_embeddings()
except Exception as e:
logger.warning(f"Could not update embedding for {table_name}: {e}")
_data_catalog = None
def get_data_catalog() -> DataCatalog:
"""Get the singleton data catalog instance."""
global _data_catalog
if _data_catalog is None:
_data_catalog = DataCatalog()
return _data_catalog
|