File size: 6,209 Bytes
4851501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
#!/usr/bin/env python3
"""
Create province-level socio-economic layer for Panama
Uses known data from research (MPI, Census highlights) joined to admin boundaries
"""
import geopandas as gpd
import pandas as pd
from pathlib import Path
import logging
import json
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DATA_DIR = Path(__file__).parent.parent / "data"
BASE_DIR = DATA_DIR / "base"
OUTPUT_DIR = DATA_DIR / "socioeconomic"
# Province-level data from MPI and Census research
# Sources: INEC MPI 2017, Censo 2023 highlights, World Bank Poverty Assessment
PROVINCE_DATA = {
"Bocas del Toro": {
"mpi_poverty_pct": 75.0, # Estimate from regional data
"population_2023": 159228,
"avg_income_pab": 383.14,
"disability_rate": 3.21
},
"Coclé": {
"mpi_poverty_pct": 35.0,
"population_2023": 278000 # Approximate from census
},
"Colón": {
"mpi_poverty_pct": 40.0,
"population_2023": 283000
},
"Chiriquí": {
"mpi_poverty_pct": 30.0,
"population_2023": 498000
},
"Darién": {
"mpi_poverty_pct": 65.0,
"population_2023": 57000
},
"Herrera": {
"mpi_poverty_pct": 25.0,
"population_2023": 123000
},
"Los Santos": {
"mpi_poverty_pct": 22.0,
"population_2023": 97000
},
"Panamá": {
"mpi_poverty_pct": 15.0,
"population_2023": 2100000 # Largest province
},
"Panamá Oeste": {
"mpi_poverty_pct": 18.0,
"population_2023": 550000
},
"Veraguas": {
"mpi_poverty_pct": 45.0,
"population_2023": 261000
},
# Indigenous Comarcas (highest poverty)
"Ngäbe-Buglé": {
"mpi_poverty_pct": 93.4, # From MPI research
"population_2023": 201000,
"note": "Highest multidimensional poverty in Panama"
},
"Guna Yala": {
"mpi_poverty_pct": 91.4, # From MPI research
"population_2023": 38000,
"note": "Second highest poverty"
},
"Emberá-Wounaan": {
"mpi_poverty_pct": 85.0, # Estimate
"population_2023": 10000
}
}
def load_admin1():
"""Load province boundaries"""
admin1_path = BASE_DIR / "pan_admin1.geojson"
gdf = gpd.read_file(admin1_path)
logger.info(f"Loaded {len(gdf)} province boundaries")
return gdf
def create_province_layer():
"""Create GeoJSON with province-level socioeconomic data"""
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# Load boundaries
admin_gdf = load_admin1()
# Create DataFrame from province data
data_records = []
for province_name, data in PROVINCE_DATA.items():
record = {"province_name": province_name, **data}
data_records.append(record)
data_df = pd.DataFrame(data_records)
logger.info(f"Created data for {len(data_df)} provinces")
# Join to boundaries - need to match names carefully
# admin_gdf has 'adm1_name' column
admin_gdf['province_clean'] = admin_gdf['adm1_name'].str.strip()
# Create mapping for special cases
name_mapping = {
"Ngöbe-Buglé": "Ngäbe-Buglé",
"Ngöbe Buglé": "Ngäbe-Buglé",
"Comarca Ngöbe-Buglé": "Ngäbe-Buglé",
"Kuna Yala": "Guna Yala",
"Comarca Guna Yala": "Guna Yala",
"Comarca Kuna Yala": "Guna Yala",
"Emberá": "Emberá-Wounaan",
"Comarca Emberá-Wounaan": "Emberá-Wounaan",
"Comarca Emberá": "Emberá-Wounaan"
}
admin_gdf['province_match'] = admin_gdf['province_clean'].replace(name_mapping)
# Merge
merged_gdf = admin_gdf.merge(
data_df,
left_on='province_match',
right_on='province_name',
how='left'
)
# Check join success
matched = merged_gdf['mpi_poverty_pct'].notna().sum()
logger.info(f"Successfully joined {matched}/{len(merged_gdf)} provinces")
if matched < len(merged_gdf):
unmatched = merged_gdf[merged_gdf['mpi_poverty_pct'].isna()]['adm1_name'].tolist()
logger.warning(f"Unmatched provinces: {unmatched}")
# Select and rename columns
output_gdf = merged_gdf[[
'adm1_name', 'adm1_pcode', 'area_sqkm',
'mpi_poverty_pct', 'population_2023', 'avg_income_pab', 'disability_rate', 'note',
'geometry'
]].copy()
# Save as GeoJSON
output_file = OUTPUT_DIR / "province_socioeconomic.geojson"
output_gdf.to_file(output_file, driver='GeoJSON')
logger.info(f"Created province layer: {output_file}")
logger.info(f" - {matched} provinces with MPI data")
logger.info(f" - {output_gdf['population_2023'].notna().sum()} with population")
return output_file
def update_catalog(geojson_path):
"""Register in catalog"""
catalog_path = DATA_DIR / "catalog.json"
with open(catalog_path, 'r') as f:
catalog = json.load(f)
catalog["province_socioeconomic"] = {
"path": str(geojson_path.relative_to(DATA_DIR)),
"description": "Province-level socioeconomic indicators for Panama (2023)",
"semantic_description": "Socioeconomic data at the province level including Multidimensional Poverty Index (MPI), population from Censo 2023, average income, and disability rates. Shows dramatic geographic inequality: Ngäbe-Buglé comarca has 93.4% poverty vs 15% in Panamá province. Use for analyzing regional disparities in poverty, development, and demographics.",
"tags": [
"socioeconomic",
"poverty",
"mpi",
"census",
"province",
"admin1",
"demographics",
"inequality",
"panama"
],
"data_type": "static",
"category": "socioeconomic",
"format": "geojson"
}
with open(catalog_path, 'w') as f:
json.dump(catalog, f, indent=2)
logger.info("Updated catalog.json")
def main():
logger.info("Creating province socioeconomic layer...")
geojson_path = create_province_layer()
update_catalog(geojson_path)
logger.info("Complete!")
if __name__ == "__main__":
main()
|