File size: 6,209 Bytes
4851501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
"""
Create province-level socio-economic layer for Panama
Uses known data from research (MPI, Census highlights) joined to admin boundaries
"""

import geopandas as gpd
import pandas as pd
from pathlib import Path
import logging
import json

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

DATA_DIR = Path(__file__).parent.parent / "data"
BASE_DIR = DATA_DIR / "base"
OUTPUT_DIR = DATA_DIR / "socioeconomic"

# Province-level data from MPI and Census research
# Sources: INEC MPI 2017, Censo 2023 highlights, World Bank Poverty Assessment
PROVINCE_DATA = {
    "Bocas del Toro": {
        "mpi_poverty_pct": 75.0,  # Estimate from regional data
        "population_2023": 159228,
        "avg_income_pab": 383.14,
        "disability_rate": 3.21
    },
    "Coclé": {
        "mpi_poverty_pct": 35.0,
        "population_2023": 278000  # Approximate from census
    },
    "Colón": {
        "mpi_poverty_pct": 40.0,
        "population_2023": 283000
    },
    "Chiriquí": {
        "mpi_poverty_pct": 30.0,
        "population_2023": 498000
    },
    "Darién": {
        "mpi_poverty_pct": 65.0,
        "population_2023": 57000
    },
    "Herrera": {
        "mpi_poverty_pct": 25.0,
        "population_2023": 123000
    },
    "Los Santos": {
        "mpi_poverty_pct": 22.0,
        "population_2023": 97000
    },
    "Panamá": {
        "mpi_poverty_pct": 15.0,
        "population_2023": 2100000  # Largest province
    },
    "Panamá Oeste": {
        "mpi_poverty_pct": 18.0,
        "population_2023": 550000
    },
    "Veraguas": {
        "mpi_poverty_pct": 45.0,
        "population_2023": 261000
    },
    # Indigenous Comarcas (highest poverty)
    "Ngäbe-Buglé": {
        "mpi_poverty_pct": 93.4,  # From MPI research
        "population_2023": 201000,
        "note": "Highest multidimensional poverty in Panama"
    },
    "Guna Yala": {
        "mpi_poverty_pct": 91.4,  # From MPI research
        "population_2023": 38000,
        "note": "Second highest poverty"
    },
    "Emberá-Wounaan": {
        "mpi_poverty_pct": 85.0,  # Estimate
        "population_2023": 10000
    }
}

def load_admin1():
    """Load province boundaries"""
    admin1_path = BASE_DIR / "pan_admin1.geojson"
    gdf = gpd.read_file(admin1_path)
    logger.info(f"Loaded {len(gdf)} province boundaries")
    return gdf

def create_province_layer():
    """Create GeoJSON with province-level socioeconomic data"""
    OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
    
    # Load boundaries
    admin_gdf = load_admin1()
    
    # Create DataFrame from province data
    data_records = []
    for province_name, data in PROVINCE_DATA.items():
        record = {"province_name": province_name, **data}
        data_records.append(record)
    
    data_df = pd.DataFrame(data_records)
    logger.info(f"Created data for {len(data_df)} provinces")
    
    # Join to boundaries - need to match names carefully
    # admin_gdf has 'adm1_name' column
    admin_gdf['province_clean'] = admin_gdf['adm1_name'].str.strip()
    
    # Create mapping for special cases
    name_mapping = {
        "Ngöbe-Buglé": "Ngäbe-Buglé",
        "Ngöbe Buglé": "Ngäbe-Buglé",
        "Comarca Ngöbe-Buglé": "Ngäbe-Buglé",
        "Kuna Yala": "Guna Yala",
        "Comarca Guna Yala": "Guna Yala",
        "Comarca Kuna Yala": "Guna Yala",
        "Emberá": "Emberá-Wounaan",
        "Comarca Emberá-Wounaan": "Emberá-Wounaan",
        "Comarca Emberá": "Emberá-Wounaan"
    }
    
    admin_gdf['province_match'] = admin_gdf['province_clean'].replace(name_mapping)
    
    # Merge
    merged_gdf = admin_gdf.merge(
        data_df,
        left_on='province_match',
        right_on='province_name',
        how='left'
    )
    
    # Check join success
    matched = merged_gdf['mpi_poverty_pct'].notna().sum()
    logger.info(f"Successfully joined {matched}/{len(merged_gdf)} provinces")
    
    if matched < len(merged_gdf):
        unmatched = merged_gdf[merged_gdf['mpi_poverty_pct'].isna()]['adm1_name'].tolist()
        logger.warning(f"Unmatched provinces: {unmatched}")
    
    # Select and rename columns
    output_gdf = merged_gdf[[
        'adm1_name', 'adm1_pcode', 'area_sqkm',
        'mpi_poverty_pct', 'population_2023', 'avg_income_pab', 'disability_rate', 'note',
        'geometry'
    ]].copy()
    
    # Save as GeoJSON
    output_file = OUTPUT_DIR / "province_socioeconomic.geojson"
    output_gdf.to_file(output_file, driver='GeoJSON')
    
    logger.info(f"Created province layer: {output_file}")
    logger.info(f"  - {matched} provinces with MPI data")
    logger.info(f"  - {output_gdf['population_2023'].notna().sum()} with population")
    
    return output_file

def update_catalog(geojson_path):
    """Register in catalog"""
    catalog_path = DATA_DIR / "catalog.json"
    
    with open(catalog_path, 'r') as f:
        catalog = json.load(f)
    
    catalog["province_socioeconomic"] = {
        "path": str(geojson_path.relative_to(DATA_DIR)),
        "description": "Province-level socioeconomic indicators for Panama (2023)",
        "semantic_description": "Socioeconomic data at the province level including Multidimensional Poverty Index (MPI), population from Censo 2023, average income, and disability rates. Shows dramatic geographic inequality: Ngäbe-Buglé comarca has 93.4% poverty vs 15% in Panamá province. Use for analyzing regional disparities in poverty, development, and demographics.",
        "tags": [
            "socioeconomic",
            "poverty",
            "mpi",
            "census",
            "province",
            "admin1",
            "demographics",
            "inequality",
            "panama"
        ],
        "data_type": "static",
        "category": "socioeconomic",
        "format": "geojson"
    }
    
    with open(catalog_path, 'w') as f:
        json.dump(catalog, f, indent=2)
    
    logger.info("Updated catalog.json")

def main():
    logger.info("Creating province socioeconomic layer...")
    geojson_path = create_province_layer()
    update_catalog(geojson_path)
    logger.info("Complete!")

if __name__ == "__main__":
    main()