File size: 39,823 Bytes
4851501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
"""
Query Executor Service

Handles query processing with intent detection, data querying, and response generation.
Uses semantic search for scalable dataset discovery and session-scoped layer storage.
"""

from backend.core.llm_gateway import LLMGateway
from backend.services.data_loader import get_data_loader
from backend.core.geo_engine import get_geo_engine
from backend.services.response_formatter import ResponseFormatter
from backend.core.session_store import get_session_store
from backend.core.semantic_search import get_semantic_search
from backend.core.data_catalog import get_data_catalog
from backend.core.query_planner import get_query_planner
from typing import List, Dict, Any, Optional
import json
import datetime
import uuid
import logging

logger = logging.getLogger(__name__)

# Default session ID for backward compatibility
DEFAULT_SESSION_ID = "default-session"


class QueryExecutor:
    def __init__(self):
        self.llm = LLMGateway()
        self.data_loader = get_data_loader()
        self.geo_engine = get_geo_engine()
        self.session_store = get_session_store()
        self.semantic_search = get_semantic_search()
        self.catalog = get_data_catalog()
        self.query_planner = get_query_planner()

    def _get_schema_context(self) -> str:
        """Returns the database schema for the LLM context."""
        return self.data_loader.get_schema_context()

    async def process_query_with_context(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
        """
        Orchestrates the full query processing flow with conversation context.
        """
        # 1. Detect intent
        intent = await self.llm.detect_intent(query, history)
        print(f"[GeoQuery] Detected intent: {intent}")
        
        # 2. Route based on intent
        if intent == "GENERAL_CHAT":
            return await self._handle_general_chat(query, history)
        elif intent in ["DATA_QUERY", "MAP_REQUEST"]:
            # Always include map for data queries - the visual is helpful
            return await self._handle_data_query(query, history, include_map=True)
        elif intent == "SPATIAL_OP":
            return await self._handle_spatial_op(query, history)
        elif intent == "STAT_QUERY":
            return await self._handle_stat_query(query, history)
        else:
            return await self._handle_general_chat(query, history)

    async def process_query_stream(self, query: str, history: List[Dict[str, str]]):
        """
        Streamable version of process_query_with_context.
        Yields: {"event": "status"|"thought"|"chunk"|"result", "data": ...}
        """
        
        # 1. Intent Detection with Thoughts
        yield {"event": "status", "data": json.dumps({"status": "🧠 Understanding intent..."})}
        
        intent = "GENERAL_CHAT"
        intent_buffer = ""
        
        try:
            async for chunk in self.llm.stream_intent(query, history):
                if chunk["type"] == "thought":
                    yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
                elif chunk["type"] == "content":
                    intent_buffer += chunk["text"]
        except Exception as e:
            print(f"Intent stream error: {e}")
        
        intent = intent_buffer.strip().upper()
        if not intent:
            intent = "GENERAL_CHAT" 
            
        # Clean up intent string
        for valid in ["GENERAL_CHAT", "DATA_QUERY", "MAP_REQUEST", "SPATIAL_OP", "STAT_QUERY"]:
             if valid in intent:
                 intent = valid
                 break
        
        yield {"event": "intent", "data": json.dumps({"intent": intent})}
        print(f"[GeoQuery] Detected intent: {intent}")

        if intent == "GENERAL_CHAT":
            async for chunk in self.llm.generate_response_stream(query, history):
                # Transform to frontend protocol
                if chunk.get("type") == "content":
                     yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk.get("text")})}
                elif chunk.get("type") == "thought":
                     yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk.get("content")})}
            
            # Send final result to clear loading status
            yield {"event": "result", "data": json.dumps({"response": ""})}
            return

        # Handle Data/Map/Stat Queries together via a unified stream handler
        
        if intent in ["DATA_QUERY", "MAP_REQUEST", "STAT_QUERY"]:
            include_map = intent != "STAT_QUERY"
            session_id = DEFAULT_SESSION_ID  # TODO: Get from request context
            
            # 0. Check query complexity
            complexity = self.query_planner.detect_complexity(query)
            
            if complexity["is_complex"]:
                yield {"event": "status", "data": json.dumps({"status": "πŸ”„ Complex query detected, planning steps..."})}
                logger.info(f"Complex query detected: {complexity['reason']}")
                
                # Use multi-step executor
                async for event in self._execute_multi_step_query(query, history, include_map, session_id):
                    yield event
                return
            
            # Simple query - continue with existing flow
            # 0. Semantic Discovery (scalable pre-filter)
            yield {"event": "status", "data": json.dumps({"status": "πŸ“š Searching data catalog..."})}            
            
            # Use semantic search to find top candidates
            candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
            
            if candidate_tables:
                # Get focused summaries for LLM refinement
                candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
            else:
                # Fallback to all summaries (legacy behavior for small catalogs)
                candidate_summaries = self.catalog.get_all_table_summaries()
            
            # 1. LLM refines from candidates
            yield {"event": "status", "data": json.dumps({"status": "πŸ” Identifying relevant tables..."})}
            relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
            
            # 2. Lazy Load
            if relevant_tables:
                yield {"event": "status", "data": json.dumps({"status": f"πŸ’Ύ Loading tables: {', '.join(relevant_tables)}..."})}
            
            feature_tables = []
            for table in relevant_tables:
                if self.geo_engine.ensure_table_loaded(table):
                    feature_tables.append(table)
            
            # 3. Schema
            table_schema = self.geo_engine.get_table_schemas()
            
            # 4. Generate SQL (Streaming Thoughts!)
            yield {"event": "status", "data": json.dumps({"status": "✍️ Writing SQL query..."})}
            
            sql_buffer = ""
            async for chunk in self.llm.stream_analytical_sql(query, table_schema, history):
                if chunk["type"] == "thought":
                    yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
                elif chunk["type"] == "content":
                    sql_buffer += chunk["text"]
            
            sql = sql_buffer.replace("```sql", "").replace("```", "").strip()
            
            # 5. Check for DATA_UNAVAILABLE error from LLM
            if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
                yield {"event": "status", "data": json.dumps({"status": "ℹ️ Data not available"})}
                
                requested = "the requested data"
                available = "administrative boundaries (provinces, districts, corregimientos)"
                
                for line in sql.split("\n"):
                    if "Requested:" in line:
                        requested = line.split("Requested:")[-1].strip()
                    elif "Available:" in line:
                        available = line.split("Available:")[-1].strip()
                
                error_response = f"""I couldn't find data for **{requested}** in the current database.

**Available datasets include:**
- {available}

If you need additional data, please let me know and I can help you understand what's currently available or suggest alternative queries."""
                
                yield {
                    "event": "result",
                    "data": json.dumps({
                        "response": error_response,
                        "sql_query": sql,
                        "geojson": None,
                        "data_citations": [],
                        "chart_data": None,
                        "raw_data": []
                    })
                }
                return 
            
            # 6. Execute query
            yield {"event": "status", "data": json.dumps({"status": "⚑ Executing query..."})}
            
            geojson = None
            features = []
            error_message = None
            
            try:
                geojson = self.geo_engine.execute_spatial_query(sql)
                features = geojson.get("features", [])
                yield {"event": "status", "data": json.dumps({"status": f"βœ… Found {len(features)} results"})}
            except Exception as e:
                error_message = str(e)
                yield {"event": "status", "data": json.dumps({"status": "⚠️ Query error, attempting repair..."})}
                try:
                    sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
                    geojson = self.geo_engine.execute_spatial_query(sql)
                    features = geojson.get("features", [])
                    error_message = None
                except Exception as e2:
                    print(f"Repair failed: {e2}")

            if error_message:
                 yield {
                    "event": "result",
                    "data": json.dumps({
                        "response": f"I was unable to process your request because the data query failed. \n\nError details: {error_message}",
                        "sql_query": sql,
                        "geojson": None,
                        "data_citations": [],
                        "chart_data": None,
                        "raw_data": []
                    })
                 }
                 return

            # 7. Post-process using ResponseFormatter
            citations = ResponseFormatter.generate_citations(relevant_tables, features)
            
            # Chart
            chart_data = ResponseFormatter.generate_chart_data(sql, features)
            if intent == "STAT_QUERY" and not chart_data and features:
                 chart_data = ResponseFormatter.generate_chart_data("GROUP BY forced", features)

            # Raw Data
            raw_data = ResponseFormatter.prepare_raw_data(features)
            
            # Map Config 
            if include_map and features and geojson:
                # Generate AI layer name
                layer_info = await self.llm.generate_layer_name(query, sql)
                layer_name_ai = layer_info.get("name", "Map Layer")
                layer_emoji = layer_info.get("emoji", "πŸ“")
                point_style = layer_info.get("pointStyle", None)
                geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
                
                try:
                    table_name = self.geo_engine.register_layer(layer_id, geojson)
                    self.session_store.add_layer(session_id, {
                        "id": layer_id, 
                        "name": layer_name, 
                        "table_name": table_name, 
                        "timestamp": datetime.datetime.now().isoformat()
                    })
                except Exception as e:
                    logger.warning(f"Failed to register layer: {e}")

            # 8. Explanation (Streaming!)
            yield {"event": "status", "data": json.dumps({"status": "πŸ’¬ Generating explanation..."})}
            
            data_summary = ResponseFormatter.generate_data_summary(features)

            explanation_buffer = ""
            
            async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
                if chunk["type"] == "thought":
                    yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
                elif chunk["type"] == "content":
                    explanation_buffer += chunk["text"]
                    yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
            
            # 9. Final Result Event
            yield {"event": "result", "data": json.dumps({
                "response": explanation_buffer,
                "sql_query": sql,
                "geojson": geojson if include_map and features else None,
                "chart_data": chart_data,
                "raw_data": raw_data,
                "data_citations": citations
            })}
            
        elif intent == "SPATIAL_OP":
            yield {"event": "status", "data": json.dumps({"status": "πŸ“ Preparing spatial operation..."})}
            session_id = DEFAULT_SESSION_ID  # TODO: Get from request context
            
            # 0. Semantic Discovery for base tables
            candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
            if candidate_tables:
                candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
            else:
                candidate_summaries = self.catalog.get_all_table_summaries()
            
            # 1. Identify relevant base tables from query
            relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
            
            # 2. Lazy load those tables
            for table in relevant_tables:
                self.geo_engine.ensure_table_loaded(table)
            
            # 3. Get schema of loaded base tables
            base_table_schema = self.geo_engine.get_table_schemas()
            
            # 4. Prepare Layer Context (user-created layers from session)
            session_layers = self.session_store.get_layers(session_id)
            layer_context = "User-Created Layers:\n"
            if not session_layers:
                 layer_context += "(No user layers created yet.)\n"
            else:
                 for i, layer in enumerate(session_layers):
                     layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
            
            # 5. Combine both contexts for LLM
            full_context = f"{base_table_schema}\n\n{layer_context}"
            
            # 6. Generate Spatial SQL
            yield {"event": "status", "data": json.dumps({"status": "✍️ Writing spatial SQL..."})}
            sql = await self.llm.generate_spatial_sql(query, full_context, history)
            
            # 7. Execute
            yield {"event": "status", "data": json.dumps({"status": "βš™οΈ Processing geometry..."})}
            error_message = None
            geojson = None
            features = []
            
            try:
                geojson = self.geo_engine.execute_spatial_query(sql)
                features = geojson.get("features", [])
                yield {"event": "status", "data": json.dumps({"status": f"βœ… Result contains {len(features)} features"})}
            except Exception as e:
                error_message = str(e)
                yield {"event": "status", "data": json.dumps({"status": "⚠️ Spatial error, attempting repair..."})}
                try:
                     sql = await self.llm.correct_sql(query, sql, error_message, full_context)
                     geojson = self.geo_engine.execute_spatial_query(sql)
                     features = geojson.get("features", [])
                     error_message = None
                except Exception as e2:
                     yield {
                        "event": "result",
                        "data": json.dumps({
                            "response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
                            "sql_query": sql,
                            "geojson": None,
                            "data_citations": [],
                            "chart_data": None,
                            "raw_data": []
                        })
                    }
                     return

            # 4. Result Processing
            if features:
                # Generate AI layer name
                layer_info = await self.llm.generate_layer_name(query, sql)
                layer_name_ai = layer_info.get("name", "Map Layer")
                layer_emoji = layer_info.get("emoji", "πŸ“")
                point_style = layer_info.get("pointStyle", None)
                geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
                
                try:
                    table_name = self.geo_engine.register_layer(layer_id, geojson)
                    self.session_store.add_layer(session_id, {
                        "id": layer_id, 
                        "name": layer_name, 
                        "table_name": table_name, 
                        "timestamp": datetime.datetime.now().isoformat()
                    })
                except Exception as e:
                    logger.warning(f"Failed to register layer: {e}")
                
            # 5. Explanation
            yield {"event": "status", "data": json.dumps({"status": "πŸ’¬ Explaining results..."})}
            data_summary = f"Spatial operation resulted in {len(features)} features."
            
            explanation_buffer = ""
            async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
                if chunk["type"] == "thought":
                    yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
                elif chunk["type"] == "content":
                    explanation_buffer += chunk["text"]
                    yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
            
            # 6. Final Result
            yield {"event": "result", "data": json.dumps({
                "response": explanation_buffer,
                "sql_query": sql,
                "geojson": geojson,
                "chart_data": None,
                "raw_data": [], # Spatial ops usually visual
                "data_citations": []
            })}
            return

        else:
             # Fallback
             yield {"event": "chunk", "data": json.dumps({"type": "text", "content": "I'm not sure how to handle this query yet."})}

    async def _handle_general_chat(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
        """Handles general conversational queries."""
        # Add schema context to help the LLM answer questions about the data
        enhanced_query = f"""The user is asking about Panama geographic data. 
        
Available data: {len(self.data_loader.admin1)} provinces, {len(self.data_loader.admin2)} districts, {len(self.data_loader.admin3)} corregimientos.

User question: {query}

Respond helpfully as GeoQuery, the territorial intelligence assistant."""

        response = await self.llm.generate_response(enhanced_query, history)
        
        return {
            "response": response,
            "sql_query": None,
            "geojson": None,
            "data_citations": [],
            "intent": "GENERAL_CHAT"
        }

    async def _handle_data_query(self, query: str, history: List[Dict[str, str]], include_map: bool = True) -> Dict[str, Any]:
        """
        Handles data queries using text-to-SQL with SOTA Smart Discovery.
        """
        print(f"[GeoQuery] Starting Data Query: {query}")
        
        # 0. Get Catalog
        from backend.core.data_catalog import get_data_catalog
        catalog = get_data_catalog()
        
        # 1. Smart Discovery: Identify relevant tables
        summaries = catalog.get_all_table_summaries()
        
        # Ask LLM which tables are relevant
        relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
        
        # 2. Lazy Loading
        feature_tables = []
        for table in relevant_tables:
            if self.geo_engine.ensure_table_loaded(table):
                feature_tables.append(table)
            else:
                print(f"[GeoQuery] Warning: Could not load relevant table '{table}'")
                
        # 3. Get schema context (now includes the newly loaded tables)
        table_schema = self.geo_engine.get_table_schemas()

        # Fallback for empty schema
        if len(table_schema) < 50: 
             print("[GeoQuery] GeoEngine schema empty. Fetching from Catalog Metadata.")
             fallback_tables = list(set(feature_tables + ["pan_admin1", "pan_admin2", "pan_admin3"]))
             table_schema = catalog.get_specific_table_schemas(fallback_tables)
        
        # 4. Generate real SQL using LLM
        print(f"[GeoQuery] Generating SQL with context size: {len(table_schema)} chars")
        sql = await self.llm.generate_analytical_sql(query, table_schema, history)
        
        # Check for SQL generation errors
        if sql.startswith("-- Error"):
            available_data = ", ".join(feature_tables) if feature_tables else "Administrative Boundaries"
            return {
                "response": f"I couldn't find the specific data you asked for. I have access to: {available_data}. \n\nOriginal request: {query}",
                "sql_query": sql,
                "intent": "DATA_QUERY"
            }
        
        # 5. Execute SQL in DuckDB
        error_message = None
        try:
            geojson = self.geo_engine.execute_spatial_query(sql)
            features = geojson.get("features", [])
            print(f"[GeoQuery] Query returned {len(features)} features")
        except Exception as e:
            error_message = str(e)
            print(f"[GeoQuery] SQL execution error: {error_message}")
            
            # Self-Correction Loop
            try:
                sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
                geojson = self.geo_engine.execute_spatial_query(sql)
                features = geojson.get("features", [])
                error_message = None 
            except Exception as e2:
                return {
                    "response": f"The SQL query failed to execute even after an automatic repair attempt.\nOriginal Error: {error_message}\nRepair Error: {str(e2)}",
                    "sql_query": sql,
                    "intent": "DATA_QUERY"
                }
        
        # 6. Post-Process via ResponseFormatter
        citations = ResponseFormatter.generate_citations(relevant_tables, features)
        data_summary = ResponseFormatter.generate_data_summary(features)
        
        # 7. Generate explanation
        explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
        
        # 8. Add Layer Metadata to GeoJSON and REGISTER in GeoEngine
        if include_map and features:
            # Generate AI layer name
            layer_info = await self.llm.generate_layer_name(query, sql)
            layer_name_ai = layer_info.get("name", "Map Layer")
            layer_emoji = layer_info.get("emoji", "πŸ“")
            point_style = layer_info.get("pointStyle", None)
            geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
            
            try:
                table_name = self.geo_engine.register_layer(layer_id, geojson)
                self.session_store.add_layer(DEFAULT_SESSION_ID, {
                    "id": layer_id,
                    "name": layer_name,
                    "table_name": table_name,
                    "timestamp": datetime.datetime.now().isoformat()
                })
            except Exception as e:
                logger.warning(f"Failed to register layer in GeoEngine: {e}")

        # 9. Auto-generate Chart
        chart_data = ResponseFormatter.generate_chart_data(sql, features)

        # 10. Prepare Raw Data
        raw_data = ResponseFormatter.prepare_raw_data(features)

        return {
            "response": explanation,
            "sql_query": sql,  
            "geojson": geojson if include_map and features else None,
            "data_citations": citations,
            "chart_data": chart_data,
            "raw_data": raw_data,
            "intent": "DATA_QUERY" if not include_map else "MAP_REQUEST"
        }

    async def _handle_spatial_op(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
        """Handles spatial operations (Difference, Intersection, etc) using GeoEngine."""
        # 0. Get data catalog for relevant tables
        from backend.core.data_catalog import get_data_catalog
        catalog = get_data_catalog()
        summaries = catalog.get_all_table_summaries()
        
        # 1. Identify relevant base tables from query
        relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
        
        # 2. Lazy load those tables
        for table in relevant_tables:
            self.geo_engine.ensure_table_loaded(table)
        
        # 3. Get schema of loaded base tables
        base_table_schema = self.geo_engine.get_table_schemas()
        
        # 4. Prepare Layer Context (user-created layers from session)
        session_layers = self.session_store.get_layers(DEFAULT_SESSION_ID)
        layer_context = "User-Created Layers:\n"
        if not session_layers:
             layer_context += "(No user layers created yet.)\n"
        else:
             for i, layer in enumerate(session_layers):
                 layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
        
        # 5. Combine both contexts for LLM
        full_context = f"{base_table_schema}\n\n{layer_context}"
        
        # 6. Generate Spatial SQL
        sql = await self.llm.generate_spatial_sql(query, full_context, history)
        
        # 7. Execute
        error_message = None
        geojson = None
        features = []
        
        try:
            geojson = self.geo_engine.execute_spatial_query(sql)
            features = geojson.get("features", [])
        except Exception as e:
            error_message = str(e)
            try:
                 sql = await self.llm.correct_sql(query, sql, error_message, full_context)
                 geojson = self.geo_engine.execute_spatial_query(sql)
                 features = geojson.get("features", [])
                 error_message = None
            except Exception as e2:
                 return {
                    "response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
                    "sql_query": sql,
                    "intent": "SPATIAL_OP"
                }

        # 4. Result Processing
        if features:
            # Generate AI layer name
            layer_info = await self.llm.generate_layer_name(query, sql)
            layer_name_ai = layer_info.get("name", "Map Layer")
            layer_emoji = layer_info.get("emoji", "πŸ“")
            point_style = layer_info.get("pointStyle", None)
            geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
            table_name = self.geo_engine.register_layer(layer_id, geojson)
            self.session_store.add_layer(DEFAULT_SESSION_ID, {
                "id": layer_id, 
                "name": layer_name, 
                "table_name": table_name, 
                "timestamp": datetime.datetime.now().isoformat()
            })
            
        data_summary = f"Spatial operation resulted in {len(features)} features."
        explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
        
        return {
            "response": explanation,
            "sql_query": sql,
            "geojson": geojson,
            "data_citations": [], 
            "intent": "SPATIAL_OP"
        }

    async def _handle_stat_query(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
        """
        Handles statistical queries where charts/tables are more important than maps.
        """
        # Reuse data query logic but without map emphasis
        result = await self._handle_data_query(query, history, include_map=False)
        result["intent"] = "STAT_QUERY"
        
        # Ensure chart data is present if possible
        if not result.get("chart_data") and result.get("raw_data"):
             # Force chart attempt
             features_mock = [{"properties": d} for d in result["raw_data"]]
             result["chart_data"] = ResponseFormatter.generate_chart_data(result.get("sql_query", ""), features_mock)
             
        return result

    async def _execute_multi_step_query(
        self, 
        query: str, 
        history: List[Dict[str, str]], 
        include_map: bool,
        session_id: str
    ):
        """
        Execute a complex query by breaking it into multiple steps.
        
        Yields streaming events throughout the multi-step process.
        """
        import asyncio
        
        # 1. Get candidate tables for planning
        yield {"event": "status", "data": json.dumps({"status": "πŸ“š Discovering relevant datasets..."})}
        
        candidate_tables = self.semantic_search.search_table_names(query, top_k=20)
        if not candidate_tables:
            candidate_tables = list(self.catalog.catalog.keys())
        
        # 2. Plan the query
        yield {"event": "status", "data": json.dumps({"status": "πŸ“‹ Creating execution plan..."})}
        
        plan = await self.query_planner.plan_query(query, candidate_tables, self.llm)
        
        if not plan.is_complex or not plan.steps:
            # Fallback to simple execution
            yield {"event": "status", "data": json.dumps({"status": "πŸ“š Executing as simple query..."})}
            # Re-route to simple path by manually calling the logic
            candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
            relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
            
            for table in relevant_tables:
                self.geo_engine.ensure_table_loaded(table)
            
            table_schema = self.geo_engine.get_table_schemas()
            
            yield {"event": "status", "data": json.dumps({"status": "✍️ Writing SQL query..."})}
            sql = await self.llm.generate_analytical_sql(query, table_schema, history)
            sql = sql.replace("```sql", "").replace("```", "").strip()
            
            try:
                geojson = self.geo_engine.execute_spatial_query(sql)
                features = geojson.get("features", [])
            except Exception as e:
                yield {"event": "result", "data": json.dumps({
                    "response": f"Query execution failed: {str(e)}",
                    "sql_query": sql
                })}
                return
            
            data_summary = ResponseFormatter.generate_data_summary(features)
            explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
            
            yield {"event": "result", "data": json.dumps({
                "response": explanation,
                "sql_query": sql,
                "geojson": geojson if include_map and features else None,
                "chart_data": ResponseFormatter.generate_chart_data(sql, features),
                "raw_data": ResponseFormatter.prepare_raw_data(features),
                "data_citations": []
            })}
            return
        
        # 3. Show plan to user
        step_descriptions = [f"Step {i+1}: {s.description}" for i, s in enumerate(plan.steps)]
        yield {"event": "chunk", "data": json.dumps({
            "type": "thought", 
            "content": f"Planning multi-step execution:\n" + "\n".join(step_descriptions)
        })}
        
        # 4. Load all needed tables
        all_tables = set()
        for step in plan.steps:
            all_tables.update(step.tables_needed)
        
        if all_tables:
            yield {"event": "status", "data": json.dumps({"status": f"πŸ’Ύ Loading {len(all_tables)} datasets..."})}
            for table in all_tables:
                self.geo_engine.ensure_table_loaded(table)
        
        # 5. Execute steps by parallel groups
        intermediate_results = {}
        all_features = []
        all_sql = []
        
        for group_idx, group in enumerate(plan.parallel_groups):
            group_steps = [s for s in plan.steps if s.step_id in group]
            
            yield {"event": "status", "data": json.dumps({
                "status": f"⚑ Executing step group {group_idx + 1}/{len(plan.parallel_groups)}..."
            })}
            
            # Execute steps in this group (could be parallel, but sequential for simplicity)
            for step in group_steps:
                yield {"event": "status", "data": json.dumps({
                    "status": f"πŸ”„ {step.description}..."
                })}
                
                # Generate SQL for this step
                table_schema = self.geo_engine.get_table_schemas()
                
                # Build step-specific prompt
                step_query = f"""Execute this step: {step.description}

Original user request: {query}

SQL Hint: {step.sql_template or 'None'}

Previous step results available: {list(intermediate_results.keys())}"""
                
                sql = await self.llm.generate_analytical_sql(step_query, table_schema, history)
                sql = sql.replace("```sql", "").replace("```", "").strip()
                
                # Skip if LLM returned an error
                if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
                    logger.warning(f"Step {step.step_id} indicated data unavailable")
                    intermediate_results[step.result_name] = {"features": [], "sql": sql}
                    continue
                
                try:
                    geojson = self.geo_engine.execute_spatial_query(sql)
                    features = geojson.get("features", [])
                    
                    intermediate_results[step.result_name] = {
                        "features": features,
                        "sql": sql,
                        "geojson": geojson
                    }
                    all_features.extend(features)
                    all_sql.append(f"-- {step.description}\n{sql}")
                    
                    yield {"event": "status", "data": json.dumps({
                        "status": f"βœ… Step got {len(features)} results"
                    })}
                    
                except Exception as e:
                    logger.error(f"Step {step.step_id} failed: {e}")
                    # Try to repair
                    try:
                        sql = await self.llm.correct_sql(step_query, sql, str(e), table_schema)
                        geojson = self.geo_engine.execute_spatial_query(sql)
                        features = geojson.get("features", [])
                        intermediate_results[step.result_name] = {
                            "features": features,
                            "sql": sql,
                            "geojson": geojson
                        }
                        all_features.extend(features)
                        all_sql.append(f"-- {step.description} (repaired)\n{sql}")
                    except Exception as e2:
                        logger.error(f"Step repair also failed: {e2}")
                        intermediate_results[step.result_name] = {"features": [], "sql": sql, "error": str(e2)}
        
        # 6. Generate final combined result
        yield {"event": "status", "data": json.dumps({"status": "πŸ’¬ Generating combined analysis..."})}
        
        # Summarize intermediate results for explanation
        result_summary = []
        for name, result in intermediate_results.items():
            features = result.get("features", [])
            result_summary.append(f"{name}: {len(features)} records")
        
        combined_summary = f"""Multi-step query completed with {len(plan.steps)} steps.

Results:
{chr(10).join(result_summary)}

Combination logic: {plan.final_combination_logic}"""
        
        # Get combined explanation
        explanation_buffer = ""
        async for chunk in self.llm.stream_explanation(query, "\n\n".join(all_sql), combined_summary, history):
            if chunk["type"] == "content":
                explanation_buffer += chunk["text"]
                yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
        
        # Find the best geojson to display (use the one with most features)
        best_geojson = None
        best_features = []
        for name, result in intermediate_results.items():
            features = result.get("features", [])
            if len(features) > len(best_features):
                best_features = features
                best_geojson = result.get("geojson")
        
        # Generate layer if we have features
        if include_map and best_features and best_geojson:
            layer_info = await self.llm.generate_layer_name(query, all_sql[0] if all_sql else "")
            layer_name_ai = layer_info.get("name", "Multi-Step Result")
            layer_emoji = layer_info.get("emoji", "πŸ“Š")
            best_geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(
                query, best_geojson, best_features, layer_name_ai, layer_emoji
            )
            
            try:
                table_name = self.geo_engine.register_layer(layer_id, best_geojson)
                self.session_store.add_layer(session_id, {
                    "id": layer_id,
                    "name": layer_name,
                    "table_name": table_name,
                    "timestamp": datetime.datetime.now().isoformat()
                })
            except Exception as e:
                logger.warning(f"Failed to register multi-step layer: {e}")
        
        # Generate chart from combined results
        chart_data = ResponseFormatter.generate_chart_data("\n".join(all_sql), best_features)
        raw_data = ResponseFormatter.prepare_raw_data(best_features)
        
        # Final result
        yield {"event": "result", "data": json.dumps({
            "response": explanation_buffer,
            "sql_query": "\n\n".join(all_sql),
            "geojson": best_geojson if include_map and best_features else None,
            "chart_data": chart_data,
            "raw_data": raw_data,
            "data_citations": [],
            "multi_step": True,
            "steps_executed": len(plan.steps)
        })}