File size: 39,823 Bytes
4851501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
"""
Query Executor Service
Handles query processing with intent detection, data querying, and response generation.
Uses semantic search for scalable dataset discovery and session-scoped layer storage.
"""
from backend.core.llm_gateway import LLMGateway
from backend.services.data_loader import get_data_loader
from backend.core.geo_engine import get_geo_engine
from backend.services.response_formatter import ResponseFormatter
from backend.core.session_store import get_session_store
from backend.core.semantic_search import get_semantic_search
from backend.core.data_catalog import get_data_catalog
from backend.core.query_planner import get_query_planner
from typing import List, Dict, Any, Optional
import json
import datetime
import uuid
import logging
logger = logging.getLogger(__name__)
# Default session ID for backward compatibility
DEFAULT_SESSION_ID = "default-session"
class QueryExecutor:
def __init__(self):
self.llm = LLMGateway()
self.data_loader = get_data_loader()
self.geo_engine = get_geo_engine()
self.session_store = get_session_store()
self.semantic_search = get_semantic_search()
self.catalog = get_data_catalog()
self.query_planner = get_query_planner()
def _get_schema_context(self) -> str:
"""Returns the database schema for the LLM context."""
return self.data_loader.get_schema_context()
async def process_query_with_context(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""
Orchestrates the full query processing flow with conversation context.
"""
# 1. Detect intent
intent = await self.llm.detect_intent(query, history)
print(f"[GeoQuery] Detected intent: {intent}")
# 2. Route based on intent
if intent == "GENERAL_CHAT":
return await self._handle_general_chat(query, history)
elif intent in ["DATA_QUERY", "MAP_REQUEST"]:
# Always include map for data queries - the visual is helpful
return await self._handle_data_query(query, history, include_map=True)
elif intent == "SPATIAL_OP":
return await self._handle_spatial_op(query, history)
elif intent == "STAT_QUERY":
return await self._handle_stat_query(query, history)
else:
return await self._handle_general_chat(query, history)
async def process_query_stream(self, query: str, history: List[Dict[str, str]]):
"""
Streamable version of process_query_with_context.
Yields: {"event": "status"|"thought"|"chunk"|"result", "data": ...}
"""
# 1. Intent Detection with Thoughts
yield {"event": "status", "data": json.dumps({"status": "π§ Understanding intent..."})}
intent = "GENERAL_CHAT"
intent_buffer = ""
try:
async for chunk in self.llm.stream_intent(query, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
intent_buffer += chunk["text"]
except Exception as e:
print(f"Intent stream error: {e}")
intent = intent_buffer.strip().upper()
if not intent:
intent = "GENERAL_CHAT"
# Clean up intent string
for valid in ["GENERAL_CHAT", "DATA_QUERY", "MAP_REQUEST", "SPATIAL_OP", "STAT_QUERY"]:
if valid in intent:
intent = valid
break
yield {"event": "intent", "data": json.dumps({"intent": intent})}
print(f"[GeoQuery] Detected intent: {intent}")
if intent == "GENERAL_CHAT":
async for chunk in self.llm.generate_response_stream(query, history):
# Transform to frontend protocol
if chunk.get("type") == "content":
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk.get("text")})}
elif chunk.get("type") == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk.get("content")})}
# Send final result to clear loading status
yield {"event": "result", "data": json.dumps({"response": ""})}
return
# Handle Data/Map/Stat Queries together via a unified stream handler
if intent in ["DATA_QUERY", "MAP_REQUEST", "STAT_QUERY"]:
include_map = intent != "STAT_QUERY"
session_id = DEFAULT_SESSION_ID # TODO: Get from request context
# 0. Check query complexity
complexity = self.query_planner.detect_complexity(query)
if complexity["is_complex"]:
yield {"event": "status", "data": json.dumps({"status": "π Complex query detected, planning steps..."})}
logger.info(f"Complex query detected: {complexity['reason']}")
# Use multi-step executor
async for event in self._execute_multi_step_query(query, history, include_map, session_id):
yield event
return
# Simple query - continue with existing flow
# 0. Semantic Discovery (scalable pre-filter)
yield {"event": "status", "data": json.dumps({"status": "π Searching data catalog..."})}
# Use semantic search to find top candidates
candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
if candidate_tables:
# Get focused summaries for LLM refinement
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
else:
# Fallback to all summaries (legacy behavior for small catalogs)
candidate_summaries = self.catalog.get_all_table_summaries()
# 1. LLM refines from candidates
yield {"event": "status", "data": json.dumps({"status": "π Identifying relevant tables..."})}
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
# 2. Lazy Load
if relevant_tables:
yield {"event": "status", "data": json.dumps({"status": f"πΎ Loading tables: {', '.join(relevant_tables)}..."})}
feature_tables = []
for table in relevant_tables:
if self.geo_engine.ensure_table_loaded(table):
feature_tables.append(table)
# 3. Schema
table_schema = self.geo_engine.get_table_schemas()
# 4. Generate SQL (Streaming Thoughts!)
yield {"event": "status", "data": json.dumps({"status": "βοΈ Writing SQL query..."})}
sql_buffer = ""
async for chunk in self.llm.stream_analytical_sql(query, table_schema, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
sql_buffer += chunk["text"]
sql = sql_buffer.replace("```sql", "").replace("```", "").strip()
# 5. Check for DATA_UNAVAILABLE error from LLM
if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
yield {"event": "status", "data": json.dumps({"status": "βΉοΈ Data not available"})}
requested = "the requested data"
available = "administrative boundaries (provinces, districts, corregimientos)"
for line in sql.split("\n"):
if "Requested:" in line:
requested = line.split("Requested:")[-1].strip()
elif "Available:" in line:
available = line.split("Available:")[-1].strip()
error_response = f"""I couldn't find data for **{requested}** in the current database.
**Available datasets include:**
- {available}
If you need additional data, please let me know and I can help you understand what's currently available or suggest alternative queries."""
yield {
"event": "result",
"data": json.dumps({
"response": error_response,
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 6. Execute query
yield {"event": "status", "data": json.dumps({"status": "β‘ Executing query..."})}
geojson = None
features = []
error_message = None
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
yield {"event": "status", "data": json.dumps({"status": f"β
Found {len(features)} results"})}
except Exception as e:
error_message = str(e)
yield {"event": "status", "data": json.dumps({"status": "β οΈ Query error, attempting repair..."})}
try:
sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
print(f"Repair failed: {e2}")
if error_message:
yield {
"event": "result",
"data": json.dumps({
"response": f"I was unable to process your request because the data query failed. \n\nError details: {error_message}",
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 7. Post-process using ResponseFormatter
citations = ResponseFormatter.generate_citations(relevant_tables, features)
# Chart
chart_data = ResponseFormatter.generate_chart_data(sql, features)
if intent == "STAT_QUERY" and not chart_data and features:
chart_data = ResponseFormatter.generate_chart_data("GROUP BY forced", features)
# Raw Data
raw_data = ResponseFormatter.prepare_raw_data(features)
# Map Config
if include_map and features and geojson:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "π")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer: {e}")
# 8. Explanation (Streaming!)
yield {"event": "status", "data": json.dumps({"status": "π¬ Generating explanation..."})}
data_summary = ResponseFormatter.generate_data_summary(features)
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# 9. Final Result Event
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"chart_data": chart_data,
"raw_data": raw_data,
"data_citations": citations
})}
elif intent == "SPATIAL_OP":
yield {"event": "status", "data": json.dumps({"status": "π Preparing spatial operation..."})}
session_id = DEFAULT_SESSION_ID # TODO: Get from request context
# 0. Semantic Discovery for base tables
candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
if candidate_tables:
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
else:
candidate_summaries = self.catalog.get_all_table_summaries()
# 1. Identify relevant base tables from query
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
# 2. Lazy load those tables
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
# 3. Get schema of loaded base tables
base_table_schema = self.geo_engine.get_table_schemas()
# 4. Prepare Layer Context (user-created layers from session)
session_layers = self.session_store.get_layers(session_id)
layer_context = "User-Created Layers:\n"
if not session_layers:
layer_context += "(No user layers created yet.)\n"
else:
for i, layer in enumerate(session_layers):
layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
# 5. Combine both contexts for LLM
full_context = f"{base_table_schema}\n\n{layer_context}"
# 6. Generate Spatial SQL
yield {"event": "status", "data": json.dumps({"status": "βοΈ Writing spatial SQL..."})}
sql = await self.llm.generate_spatial_sql(query, full_context, history)
# 7. Execute
yield {"event": "status", "data": json.dumps({"status": "βοΈ Processing geometry..."})}
error_message = None
geojson = None
features = []
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
yield {"event": "status", "data": json.dumps({"status": f"β
Result contains {len(features)} features"})}
except Exception as e:
error_message = str(e)
yield {"event": "status", "data": json.dumps({"status": "β οΈ Spatial error, attempting repair..."})}
try:
sql = await self.llm.correct_sql(query, sql, error_message, full_context)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
yield {
"event": "result",
"data": json.dumps({
"response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 4. Result Processing
if features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "π")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer: {e}")
# 5. Explanation
yield {"event": "status", "data": json.dumps({"status": "π¬ Explaining results..."})}
data_summary = f"Spatial operation resulted in {len(features)} features."
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# 6. Final Result
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": sql,
"geojson": geojson,
"chart_data": None,
"raw_data": [], # Spatial ops usually visual
"data_citations": []
})}
return
else:
# Fallback
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": "I'm not sure how to handle this query yet."})}
async def _handle_general_chat(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""Handles general conversational queries."""
# Add schema context to help the LLM answer questions about the data
enhanced_query = f"""The user is asking about Panama geographic data.
Available data: {len(self.data_loader.admin1)} provinces, {len(self.data_loader.admin2)} districts, {len(self.data_loader.admin3)} corregimientos.
User question: {query}
Respond helpfully as GeoQuery, the territorial intelligence assistant."""
response = await self.llm.generate_response(enhanced_query, history)
return {
"response": response,
"sql_query": None,
"geojson": None,
"data_citations": [],
"intent": "GENERAL_CHAT"
}
async def _handle_data_query(self, query: str, history: List[Dict[str, str]], include_map: bool = True) -> Dict[str, Any]:
"""
Handles data queries using text-to-SQL with SOTA Smart Discovery.
"""
print(f"[GeoQuery] Starting Data Query: {query}")
# 0. Get Catalog
from backend.core.data_catalog import get_data_catalog
catalog = get_data_catalog()
# 1. Smart Discovery: Identify relevant tables
summaries = catalog.get_all_table_summaries()
# Ask LLM which tables are relevant
relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
# 2. Lazy Loading
feature_tables = []
for table in relevant_tables:
if self.geo_engine.ensure_table_loaded(table):
feature_tables.append(table)
else:
print(f"[GeoQuery] Warning: Could not load relevant table '{table}'")
# 3. Get schema context (now includes the newly loaded tables)
table_schema = self.geo_engine.get_table_schemas()
# Fallback for empty schema
if len(table_schema) < 50:
print("[GeoQuery] GeoEngine schema empty. Fetching from Catalog Metadata.")
fallback_tables = list(set(feature_tables + ["pan_admin1", "pan_admin2", "pan_admin3"]))
table_schema = catalog.get_specific_table_schemas(fallback_tables)
# 4. Generate real SQL using LLM
print(f"[GeoQuery] Generating SQL with context size: {len(table_schema)} chars")
sql = await self.llm.generate_analytical_sql(query, table_schema, history)
# Check for SQL generation errors
if sql.startswith("-- Error"):
available_data = ", ".join(feature_tables) if feature_tables else "Administrative Boundaries"
return {
"response": f"I couldn't find the specific data you asked for. I have access to: {available_data}. \n\nOriginal request: {query}",
"sql_query": sql,
"intent": "DATA_QUERY"
}
# 5. Execute SQL in DuckDB
error_message = None
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
print(f"[GeoQuery] Query returned {len(features)} features")
except Exception as e:
error_message = str(e)
print(f"[GeoQuery] SQL execution error: {error_message}")
# Self-Correction Loop
try:
sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
return {
"response": f"The SQL query failed to execute even after an automatic repair attempt.\nOriginal Error: {error_message}\nRepair Error: {str(e2)}",
"sql_query": sql,
"intent": "DATA_QUERY"
}
# 6. Post-Process via ResponseFormatter
citations = ResponseFormatter.generate_citations(relevant_tables, features)
data_summary = ResponseFormatter.generate_data_summary(features)
# 7. Generate explanation
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
# 8. Add Layer Metadata to GeoJSON and REGISTER in GeoEngine
if include_map and features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "π")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(DEFAULT_SESSION_ID, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer in GeoEngine: {e}")
# 9. Auto-generate Chart
chart_data = ResponseFormatter.generate_chart_data(sql, features)
# 10. Prepare Raw Data
raw_data = ResponseFormatter.prepare_raw_data(features)
return {
"response": explanation,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"data_citations": citations,
"chart_data": chart_data,
"raw_data": raw_data,
"intent": "DATA_QUERY" if not include_map else "MAP_REQUEST"
}
async def _handle_spatial_op(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""Handles spatial operations (Difference, Intersection, etc) using GeoEngine."""
# 0. Get data catalog for relevant tables
from backend.core.data_catalog import get_data_catalog
catalog = get_data_catalog()
summaries = catalog.get_all_table_summaries()
# 1. Identify relevant base tables from query
relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
# 2. Lazy load those tables
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
# 3. Get schema of loaded base tables
base_table_schema = self.geo_engine.get_table_schemas()
# 4. Prepare Layer Context (user-created layers from session)
session_layers = self.session_store.get_layers(DEFAULT_SESSION_ID)
layer_context = "User-Created Layers:\n"
if not session_layers:
layer_context += "(No user layers created yet.)\n"
else:
for i, layer in enumerate(session_layers):
layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
# 5. Combine both contexts for LLM
full_context = f"{base_table_schema}\n\n{layer_context}"
# 6. Generate Spatial SQL
sql = await self.llm.generate_spatial_sql(query, full_context, history)
# 7. Execute
error_message = None
geojson = None
features = []
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
except Exception as e:
error_message = str(e)
try:
sql = await self.llm.correct_sql(query, sql, error_message, full_context)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
return {
"response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
"sql_query": sql,
"intent": "SPATIAL_OP"
}
# 4. Result Processing
if features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "π")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(DEFAULT_SESSION_ID, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
data_summary = f"Spatial operation resulted in {len(features)} features."
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
return {
"response": explanation,
"sql_query": sql,
"geojson": geojson,
"data_citations": [],
"intent": "SPATIAL_OP"
}
async def _handle_stat_query(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""
Handles statistical queries where charts/tables are more important than maps.
"""
# Reuse data query logic but without map emphasis
result = await self._handle_data_query(query, history, include_map=False)
result["intent"] = "STAT_QUERY"
# Ensure chart data is present if possible
if not result.get("chart_data") and result.get("raw_data"):
# Force chart attempt
features_mock = [{"properties": d} for d in result["raw_data"]]
result["chart_data"] = ResponseFormatter.generate_chart_data(result.get("sql_query", ""), features_mock)
return result
async def _execute_multi_step_query(
self,
query: str,
history: List[Dict[str, str]],
include_map: bool,
session_id: str
):
"""
Execute a complex query by breaking it into multiple steps.
Yields streaming events throughout the multi-step process.
"""
import asyncio
# 1. Get candidate tables for planning
yield {"event": "status", "data": json.dumps({"status": "π Discovering relevant datasets..."})}
candidate_tables = self.semantic_search.search_table_names(query, top_k=20)
if not candidate_tables:
candidate_tables = list(self.catalog.catalog.keys())
# 2. Plan the query
yield {"event": "status", "data": json.dumps({"status": "π Creating execution plan..."})}
plan = await self.query_planner.plan_query(query, candidate_tables, self.llm)
if not plan.is_complex or not plan.steps:
# Fallback to simple execution
yield {"event": "status", "data": json.dumps({"status": "π Executing as simple query..."})}
# Re-route to simple path by manually calling the logic
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
table_schema = self.geo_engine.get_table_schemas()
yield {"event": "status", "data": json.dumps({"status": "βοΈ Writing SQL query..."})}
sql = await self.llm.generate_analytical_sql(query, table_schema, history)
sql = sql.replace("```sql", "").replace("```", "").strip()
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
except Exception as e:
yield {"event": "result", "data": json.dumps({
"response": f"Query execution failed: {str(e)}",
"sql_query": sql
})}
return
data_summary = ResponseFormatter.generate_data_summary(features)
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
yield {"event": "result", "data": json.dumps({
"response": explanation,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"chart_data": ResponseFormatter.generate_chart_data(sql, features),
"raw_data": ResponseFormatter.prepare_raw_data(features),
"data_citations": []
})}
return
# 3. Show plan to user
step_descriptions = [f"Step {i+1}: {s.description}" for i, s in enumerate(plan.steps)]
yield {"event": "chunk", "data": json.dumps({
"type": "thought",
"content": f"Planning multi-step execution:\n" + "\n".join(step_descriptions)
})}
# 4. Load all needed tables
all_tables = set()
for step in plan.steps:
all_tables.update(step.tables_needed)
if all_tables:
yield {"event": "status", "data": json.dumps({"status": f"πΎ Loading {len(all_tables)} datasets..."})}
for table in all_tables:
self.geo_engine.ensure_table_loaded(table)
# 5. Execute steps by parallel groups
intermediate_results = {}
all_features = []
all_sql = []
for group_idx, group in enumerate(plan.parallel_groups):
group_steps = [s for s in plan.steps if s.step_id in group]
yield {"event": "status", "data": json.dumps({
"status": f"β‘ Executing step group {group_idx + 1}/{len(plan.parallel_groups)}..."
})}
# Execute steps in this group (could be parallel, but sequential for simplicity)
for step in group_steps:
yield {"event": "status", "data": json.dumps({
"status": f"π {step.description}..."
})}
# Generate SQL for this step
table_schema = self.geo_engine.get_table_schemas()
# Build step-specific prompt
step_query = f"""Execute this step: {step.description}
Original user request: {query}
SQL Hint: {step.sql_template or 'None'}
Previous step results available: {list(intermediate_results.keys())}"""
sql = await self.llm.generate_analytical_sql(step_query, table_schema, history)
sql = sql.replace("```sql", "").replace("```", "").strip()
# Skip if LLM returned an error
if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
logger.warning(f"Step {step.step_id} indicated data unavailable")
intermediate_results[step.result_name] = {"features": [], "sql": sql}
continue
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
intermediate_results[step.result_name] = {
"features": features,
"sql": sql,
"geojson": geojson
}
all_features.extend(features)
all_sql.append(f"-- {step.description}\n{sql}")
yield {"event": "status", "data": json.dumps({
"status": f"β
Step got {len(features)} results"
})}
except Exception as e:
logger.error(f"Step {step.step_id} failed: {e}")
# Try to repair
try:
sql = await self.llm.correct_sql(step_query, sql, str(e), table_schema)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
intermediate_results[step.result_name] = {
"features": features,
"sql": sql,
"geojson": geojson
}
all_features.extend(features)
all_sql.append(f"-- {step.description} (repaired)\n{sql}")
except Exception as e2:
logger.error(f"Step repair also failed: {e2}")
intermediate_results[step.result_name] = {"features": [], "sql": sql, "error": str(e2)}
# 6. Generate final combined result
yield {"event": "status", "data": json.dumps({"status": "π¬ Generating combined analysis..."})}
# Summarize intermediate results for explanation
result_summary = []
for name, result in intermediate_results.items():
features = result.get("features", [])
result_summary.append(f"{name}: {len(features)} records")
combined_summary = f"""Multi-step query completed with {len(plan.steps)} steps.
Results:
{chr(10).join(result_summary)}
Combination logic: {plan.final_combination_logic}"""
# Get combined explanation
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, "\n\n".join(all_sql), combined_summary, history):
if chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# Find the best geojson to display (use the one with most features)
best_geojson = None
best_features = []
for name, result in intermediate_results.items():
features = result.get("features", [])
if len(features) > len(best_features):
best_features = features
best_geojson = result.get("geojson")
# Generate layer if we have features
if include_map and best_features and best_geojson:
layer_info = await self.llm.generate_layer_name(query, all_sql[0] if all_sql else "")
layer_name_ai = layer_info.get("name", "Multi-Step Result")
layer_emoji = layer_info.get("emoji", "π")
best_geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(
query, best_geojson, best_features, layer_name_ai, layer_emoji
)
try:
table_name = self.geo_engine.register_layer(layer_id, best_geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register multi-step layer: {e}")
# Generate chart from combined results
chart_data = ResponseFormatter.generate_chart_data("\n".join(all_sql), best_features)
raw_data = ResponseFormatter.prepare_raw_data(best_features)
# Final result
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": "\n\n".join(all_sql),
"geojson": best_geojson if include_map and best_features else None,
"chart_data": chart_data,
"raw_data": raw_data,
"data_citations": [],
"multi_step": True,
"steps_executed": len(plan.steps)
})}
|