File size: 12,732 Bytes
4851501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# Data Flow: End-to-End Request Processing
This document provides a detailed walkthrough of how a user query flows through the GeoQuery system from input to visualization.
---
## Overview
```
User Query → Intent Detection → Semantic Search → SQL Generation →
Query Execution → Result Formatting → Explanation → Map Rendering
```
**Timeline**: 2-8 seconds for typical queries
---
## Step-by-Step Walkthrough
### Example Query
**User Input**: *"Show me hospitals in Panama City"*
---
### Step 1: Frontend - User Submits Query
**Component**: `ChatPanel.tsx`
```typescript
const handleSubmit = async (message: string) => {
// Add user message to chat
setMessages(prev => [...prev, { role: 'user', content: message }]);
// Send to backend via SSE
const response = await fetch('http://localhost:8000/api/chat', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({ message, history })
});
// Start streaming response
const reader = response.body.getReader();
...
};
```
**Request Payload**:
```json
{
"message": "Show me hospitals in Panama City",
"history": []
}
```
---
### Step 2: Backend - API Endpoint Receives Request
**File**: `backend/api/endpoints/chat.py`
```python
@router.post("/chat")
async def chat(request: ChatRequest):
# Initialize executor
executor = QueryExecutor()
# Process query with streaming
async for event in executor.process_query_stream(
request.message,
request.history
):
yield sse_format(event)
```
**Action**: Routes to `QueryExecutor.process_query_stream()`
---
### Step 3: Intent Detection
**Service**: `LLMGateway.detect_intent()`
**File**: `backend/core/llm_gateway.py`
**LLM Prompt**:
```
Analyze this user query and determine the best output type.
User Query: "Show me hospitals in Panama City"
THINK STEP BY STEP:
1. What is the user asking for?
2. Does this require geographic visualization (map)?
...
Respond with ONLY ONE of these exact words:
- GENERAL_CHAT
- DATA_QUERY
- MAP_REQUEST
- SPATIAL_OP
- STAT_QUERY
```
**Gemini Response**:
```
Thinking: The user wants to SEE hospitals on a map, explicitly asks to "show"
Response: MAP_REQUEST
```
**Streaming to Frontend**:
```json
{
"event": "intent",
"data": {"intent": "MAP_REQUEST"}
}
```
**Frontend**: Displays intent badge in chat
---
### Step 4: Semantic Discovery
**Service**: `SemanticSearch.search_table_names()`
**File**: `backend/core/semantic_search.py`
**Process**:
1. Convert query to embedding vector (384 dimensions)
```python
query_embedding = model.encode("Show me hospitals in Panama City")
```
2. Calculate cosine similarity with all dataset embeddings
```python
similarities = cosine_similarity(query_embedding, catalog_embeddings)
```
3. Return top-k matches
```python
top_k_indices = np.argsort(similarities)[-15:][::-1]
```
**Result**:
```python
[
"panama_healthsites_geojson", # similarity: 0.89
"osm_amenities", # similarity: 0.76
"panama_hospitals", # similarity: 0.74
"osm_healthcare", # similarity: 0.71
...
]
```
**Streaming to Frontend**:
```json
{
"event": "status",
"data": {"status": "📚 Searching data catalog..."}
}
```
**Performance**: <10ms for 100+ datasets
---
### Step 5: Table Schema Retrieval
**Service**: `GeoEngine.ensure_table_loaded()`
**File**: `backend/core/geo_engine.py`
**Process**:
1. Check if table already loaded in DuckDB
```python
if "panama_healthsites_geojson" not in self.loaded_tables:
```
2. Load GeoJSON file
```python
gdf = gpd.read_file("backend/data/osm/healthsites.geojson")
```
3. Register in DuckDB
```python
conn.register("panama_healthsites_geojson", gdf)
self.loaded_tables["panama_healthsites_geojson"] = gdf
```
**Schema Retrieved**:
```
Table: panama_healthsites_geojson
Columns: osm_id, name, amenity, operator, addr:city, geom
Row count: 986
Geometry type: Point
```
**Streaming to Frontend**:
```json
{
"event": "status",
"data": {"status": "💾 Loading tables: panama_healthsites_geojson..."}
}
```
---
### Step 6: SQL Generation
**Service**: `LLMGateway.generate_analytical_sql()`
**File**: `backend/core/llm_gateway.py`
**Prompt to Gemini**:
```
You are a DuckDB SQL expert. Generate a valid DuckDB SQL query.
Table: panama_healthsites_geojson
Columns: osm_id, name, amenity, operator, addr:city, geom
Row count: 986
User Request: "Show me hospitals in Panama City"
Rules:
1. Return ONLY the SQL query
2. ALWAYS include 'geom' for map visualization
3. Use ILIKE for case-insensitive matching
4. Use ST_Intersects for spatial filtering
...
Generate SQL:
```
**Gemini Thinking** (streamed):
```
"I need to:
1. Filter for amenity='hospital'
2. Filter for Panama City (district name is 'Panamá')
3. Use spatial intersection with admin boundaries
4. Include geometry for map rendering"
```
**Gemini Response**:
```sql
SELECT
name,
amenity,
operator,
geom
FROM panama_healthsites_geojson
WHERE amenity = 'hospital'
AND ST_Intersects(
geom,
(SELECT geom FROM pan_admin2 WHERE adm2_name = 'Panamá')
)
```
**Streaming to Frontend**:
```json
{
"event": "chunk",
"data": {"type": "thought", "content": "I need to filter for hospitals..."}
}
```
**Performance**: ~1 second for SQL generation
---
### Step 7: Query Execution
**Service**: `GeoEngine.execute_spatial_query()`
**File**: `backend/core/geo_engine.py`
**Execution**:
```python
try:
result = conn.execute(sql).fetchdf()
geojson = json.loads(result.to_json())
except Exception as e:
# Try SQL correction
corrected_sql = await llm.correct_sql(query, sql, str(e), schema)
result = conn.execute(corrected_sql).fetchdf()
```
**Result**:
```python
# GeoDataFrame with 45 rows
name amenity operator geom
0 Hospital Santo Tomás hospital MINSA POINT(...)
1 Hospital del Niño hospital CSS POINT(...)
...
```
**Convert to GeoJSON**:
```json
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {"type": "Point", "coordinates": [-79.5, 8.98]},
"properties": {"name": "Hospital Santo Tomás", "amenity": "hospital"}
},
...
]
}
```
**Streaming to Frontend**:
```json
{
"event": "status",
"data": {"status": "✅ Found 45 results"}
}
```
**Performance**: 100ms - 2s depending on data size
---
### Step 8: Result Formatting
**Service**: `ResponseFormatter.format_geojson_layer()`
**File**: `backend/services/response_formatter.py`
**Layer Name Generation**:
```python
layer_info = await llm.generate_layer_name(query, sql)
# Returns: {"name": "Hospitals in Panama City", "emoji": "🏥", "pointStyle": "icon"}
```
**GeoJSON Enhancement**:
```python
geojson["properties"] = {
"layer_id": "abc123",
"layer_name": "Hospitals in Panama City",
"style": {
"color": "#E63946",
"fillColor": "#E63946",
"opacity": 0.8,
"fillOpacity": 0.4
},
"pointMarker": {
"icon": "🏥",
"style": "icon",
"color": "#E63946",
"size": 32
},
"choropleth": {"enabled": false}
}
```
**Auto-Detection**:
- Detects geometry type (Point)
- Checks for numeric columns (none meaningful)
- Configures point marker style based on `pointStyle: "icon"`
---
### Step 9: Explanation Generation
**Service**: `LLMGateway.stream_explanation()`
**File**: `backend/core/llm_gateway.py`
**Prompt to Gemini**:
```
Explain the results of this data query to the user.
User Question: "Show me hospitals in Panama City"
SQL Query: SELECT name, amenity, geom FROM ... WHERE amenity='hospital'...
Data Result Summary: Found 45 features (Points)
Instructions:
1. Keep response concise
2. Only describe ACTUAL data returned
3. Cite data source
4. Speak as GeoQuery
```
**Gemini Response** (streamed):
```
"I have located 45 hospitals within Panama City district.
The map displays each hospital as a 🏥 icon. You can click on any
marker to see details including the hospital name and operator.
**Key facilities include**:
- Hospital Santo Tomás (MINSA)
- Hospital del Niño (CSS)
- Hospital Punta Pacifica (Private)
Source: Healthcare facility data from OpenStreetMap via Healthsites.io"
```
**Streaming to Frontend**:
```json
{
"event": "chunk",
"data": {"type": "text", "content": "I have located 45 hospitals..."}
}
```
**Performance**: ~1-2 seconds for explanation
---
### Step 10: Final Result Event
**Event Sent**:
```json
{
"event": "result",
"data": {
"response": "I have located 45 hospitals within Panama City...",
"sql_query": "SELECT name, amenity, geom FROM ...",
"geojson": { /* GeoJSON with 45 features */ },
"chart_data": null,
"raw_data": [ /* 45 rows of data */ ],
"data_citations": [
"Healthcare facility data from OpenStreetMap via Healthsites.io"
]
}
}
```
---
### Step 11: Frontend - Map Rendering
**Component**: `MapViewer.tsx`
**Process**:
1. Receive GeoJSON from result event
2. Create new MapLayer
```typescript
const newLayer: MapLayer = {
id: geojson.properties.layer_id,
name: geojson.properties.layer_name,
data: geojson,
visible: true,
style: geojson.properties.style,
pointMarker: geojson.properties.pointMarker
};
```
3. Render with Leaflet
```typescript
<GeoJSON
data={layer.data}
pointToLayer={(feature, latlng) => {
if (layer.pointMarker?.style === "icon") {
return L.marker(latlng, {
icon: L.divIcon({
html: `<div style="font-size: 32px">${layer.pointMarker.icon}</div>`
})
});
}
}}
/>
```
4. Auto-fit bounds to show all hospitals
5. Display layer in legend panel
**Result**: Interactive map with 45 hospital markers (🏥 icons)
---
## Performance Breakdown
| Step | Service | Time | Async |
|------|---------|------|-------|
| 1. Frontend Submit | - | <10ms | - |
| 2. API Routing | FastAPI | <5ms | - |
| 3. Intent Detection | Gemini | ~500ms | ✓ |
| 4. Semantic Search | SentenceTransformer | <10ms | ✓ |
| 5. Schema Loading | DuckDB | 50-200ms | - |
| 6. SQL Generation | Gemini | ~1s | ✓ Streamed |
| 7. Query Execution | DuckDB | 100ms-2s | - |
| 8. Formatting | Python | 10-50ms | - |
| 9. Explanation | Gemini | ~1s | ✓ Streamed |
| 10. Frontend Render | Leaflet | 50-200ms | - |
**Total**: 2-5 seconds (perception: faster due to streaming)
---
## Error Handling Flow
### SQL Execution Failure
```
SQL Error → Extract Error Message → Send to LLM → Generate Corrected SQL →
Retry Execution → If Still Fails → Return Error to User
```
**Example**:
```python
try:
result = execute_query(sql)
except Exception as e:
# Error: column "hospitals" does not exist
corrected_sql = await llm.correct_sql(query, sql, str(e), schema)
# LLM fixes: hospitals → panama_healthsites_geojson
result = execute_query(corrected_sql)
```
### Data Unavailable
```
LLM Realizes Data Missing → Returns Special Marker →
System Detects Marker → Returns Helpful Error Message
```
**Example**:
```sql
-- ERROR: DATA_UNAVAILABLE
-- Requested: crime statistics
-- Available: admin boundaries, hospitals, schools
```
---
## Streaming Architecture
**Benefits of SSE (Server-Sent Events)**:
1. **Progressive Disclosure**: User sees thinking process
2. **Faster Perceived Performance**: Content streams in
3. **Transparency**: Shows "why" behind answers
4. **Simple Protocol**: HTTP-based, works everywhere
**Event Types**:
- `status`: Processing updates ("🔍 Searching...", "⚡ Executing...")
- `intent`: Detected intent category
- `chunk`: Streamed content (thought or text)
- `result`: Final payload with all data
---
## Complex Query Flow
For queries requiring multiple steps (e.g., "Compare hospital density with school density by province"):
1. **Complexity Detection**: QueryPlanner identifies multi-dataset query
2. **Step Decomposition**: Break into atomic steps
- Step 1: Count hospitals per province
- Step 2: Count schools per province
- Step 3: Calculate ratios
3. **Parallel Execution**: Execute independent steps concurrently
4. **Result Combination**: Merge results for final answer
5. **Unified Explanation**: LLM explains combined analysis
See `backend/core/query_planner.py` for implementation.
---
## Next Steps
- **Backend Services**: [backend/CORE_SERVICES.md](backend/CORE_SERVICES.md)
- **API Reference**: [backend/API_ENDPOINTS.md](backend/API_ENDPOINTS.md)
- **Frontend Components**: [frontend/COMPONENTS.md](frontend/COMPONENTS.md)
|