File size: 11,050 Bytes
4851501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# LLM Integration & Prompt Engineering

Deep dive into GeoQuery's LLM integration, prompt system, and AI capabilities.

---

## Overview

GeoQuery uses **Google Gemini 2.0 Flash** for all AI capabilities:
- Intent detection
- Text-to-SQL generation
- Natural language explanations
- Layer naming and styling decisions

**Key Feature**: Thinking mode for transparency into reasoning process.

---

## LLMGateway Service

**File**: `backend/core/llm_gateway.py`

Central interface to Gemini API with streaming support.

### Initialization

```python
from google import genai
from google.genai import types

class LLMGateway:
    def __init__(self):
        api_key = os.getenv("GEMINI_API_KEY")
        self.client = genai.Client(api_key=api_key)
        self.model = "gemini-2.0-flash-exp"
```

### Configuration

**Model**: `gemini-2.0-flash-exp`
- **Speed**: Fast responses (~1s for SQL)
- **Quality**: High accuracy for structured output
- **Thinking Mode**: Shows reasoning process
- **JSON Output**: Structured responses

**Parameters**:
```python
config = types.GenerateContentConfig(
    temperature=1,  # Creative but consistent
    response_mime_type="application/json",  # For structured outputs
    thinking_config=types.ThinkingConfig(
        mode=types.ThinkingMode.THINKING  # Enable reasoning
    )
)
```

---

## Prompt System

All prompts centralized in `backend/core/prompts.py`.

### 1. System Instruction

**Prompt**: `SYSTEM_INSTRUCTION`

Sets overall context and capabilities:

```
You are GeoQuery, an advanced Territorial Intelligence Agent capable of 
analyzing diverse geographic datasets.

## Your Capabilities
- Dynamic Metadata Catalog (not fixed schema)
- Spatial Analysis with PostGIS/DuckDB functions
- Visual outputs (maps, charts)

## Output Guidelines
1. Be Data-Driven: Base answers on SQL query results
2. Be Visual: Use choropleth maps, point maps, charts
3. Be Transparent: Explain reasoning, cite sources
...
```

**Purpose**: Establishes AI persona and core behavior

---

### 2. Intent Detection

**Prompt**: `INTENT_DETECTION_PROMPT`

Classifies user queries into categories.

```
Analyze this user query and determine the best output type.

User Query: "{user_query}"

THINK STEP BY STEP:
1. What is the user asking for?
2. Does this require geographic visualization?
3. Does this require a chart/graph?
4. Is this a general question?

Respond with ONLY ONE of these exact words:
- GENERAL_CHAT
- DATA_QUERY  
- MAP_REQUEST
- SPATIAL_OP
- STAT_QUERY

Key rules:
- "color by", "compare regions" → MAP_REQUEST
- "create a chart" → STAT_QUERY
- Questions about data availability → GENERAL_CHAT
```

**Examples**:

| Query | Thinking | Intent |
|-------|----------|--------|
| "Show me hospitals" | User wants to SEE on map | `MAP_REQUEST` |
| "How many provinces?" | Numerical answer, no viz needed | `DATA_QUERY` |
| "Create bar chart of districts" | Explicitly requests chart | `STAT_QUERY` |
| "Subtract Chiriquí from Panama" | Geometric operation | `SPATIAL_OP` |
| "What data do you have?" | General question | `GENERAL_CHAT` |

---

### 3. SQL Generation

**Prompt**: `SQL_GENERATION_PROMPT`

Converts natural language to DuckDB SQL.

```
You are a DuckDB SQL expert for geographic data analysis.

{table_schema}

### CRITICAL - Data Availability:
✅ You may ONLY query the tables listed above.
❌ Do NOT invent table names or columns.

If requested data is NOT available, return:
-- ERROR: DATA_UNAVAILABLE
-- Requested: [what user asked for]
-- Available: [list tables you DO have]

### User Request: "{user_query}"

### Rules:
1. Return ONLY the SQL query
2. Use DuckDB syntax (ILIKE for case-insensitive)
3. ALWAYS include 'geom' for map visualization
4. For "top N", use ORDER BY ... DESC LIMIT N
5. Do NOT add LIMIT unless explicitly requested
6. NEVER invent columns that don't exist

### Special Dataset - Population:
- Use `kontur_population` (H3 hexagons)
- Columns: population, geom
- Large dataset (33K hexagons) - use LIMIT 40000
...

Generate SQL:
```

**Key Features**:
- **Error Prevention**: Explicit instructions to avoid hallucinating tables
- **Spatial Functions**: Guides use of ST_Intersects, ST_Within, etc.
- **Data Unavailable Handling**: Returns special marker instead of invalid SQL

**Examples**:

Input: "Show hospitals in David"
```sql
SELECT name, amenity, geom 
FROM panama_healthsites_geojson 
WHERE amenity = 'hospital' 
  AND ST_Intersects(geom, (SELECT geom FROM pan_admin2 WHERE adm2_name = 'David'))
```

Input: "Population density in Veraguas"
```sql
SELECT population, geom 
FROM kontur_population 
WHERE ST_Intersects(geom, (SELECT geom FROM pan_admin1 WHERE adm1_name = 'Veraguas'))
LIMIT 5000
```

---

### 4. Spatial SQL

**Prompt**: `SPATIAL_SQL_PROMPT`

For geometric operations (difference, intersection, buffer, etc.).

```
You are a GIS expert using DuckDB Spatial.

Available Data:
{layer_context}

User Request: "{user_query}"

Rules:
1. Return ONLY SQL query
2. Use DuckDB Spatial functions:
   - ST_Difference, ST_Intersection, ST_Union
   - ST_Buffer, ST_Within, ST_Contains
3. The geometry column is named 'geom'
4. Use EXACT table names shown above
5. IMPORTANT: For aggregate geometries (ST_Union), use CTE pattern:

CORRECT:
WITH layer_b_union AS (SELECT ST_Union(geom) as geom FROM layer_b)
SELECT a.*, ST_Difference(a.geom, b.geom) as geom 
FROM layer_a a, layer_b_union b

WRONG:
SELECT ST_Difference(geom, (SELECT ST_Union(geom) FROM layer_b)) 
FROM layer_a
```

**Example**:

Input: "Subtract protected areas from Chiriquí province"
```sql
WITH protected_union AS (
  SELECT ST_Union(geom) as geom FROM stri_protected_areas_2025
)
SELECT 
  p.adm1_name,
  ST_Difference(p.geom, pa.geom) as geom
FROM pan_admin1 p, protected_union pa
WHERE p.adm1_name = 'Chiriquí'
```

---

### 5. Layer Naming

**Prompt**: `LAYER_NAME_PROMPT`

Generates descriptive name, emoji, and point style for map layers.

```
User Request: "{user_query}"
SQL Query: "{sql_query}"

Rules:
1. Return JSON with: name, emoji, pointStyle
2. "name": Short descriptive (1-4 words)
3. "emoji": Single emoji for data content
4. "pointStyle": How to render points
   - "icon": Small/medium POI (<500 points)
   - "circle": Large point datasets (>500 points)  
   - null: Polygon data (use choropleth)

Examples:
{"name": "Hospitals in David", "emoji": "🏥", "pointStyle": "icon"}
{"name": "Population Density", "emoji": "👥", "pointStyle": null}
{"name": "Traffic Intersections", "emoji": "🚦", "pointStyle": "circle"}
```

**Decision Logic**:
- Hospitals, schools, parks → icon
- Intersections, sensors (large datasets) → circle
- H3 hexagons, admin boundaries → null (polygon rendering)

---

### 6. Explanation

**Prompt**: `EXPLANATION_PROMPT`

Generates natural language explanation of results.

```
Explain the results of this data query to the user.

User Question: "{user_query}"
SQL Query: {sql_query}
Data Result Summary: {data_summary}

Instructions:
1. Keep response concise
2. Only describe ACTUAL data returned
3. Cite data source
4. Speak as GeoQuery

Example citation:
"Source: Administrative boundary data from HDX/INEC, 2021"
```

**Features**:
- **Factual**: Only describes what was actually found
- **Contextual**: Relates results to user's question
- **Transparent**: Cites data sources

---

### 7. SQL Correction

**Prompt**: `SQL_CORRECTION_PROMPT`

Repairs failed SQL queries.

```
Your previous query failed. Fix it.

### Error Message:
{error_message}

### Failed SQL:
{incorrect_sql}

### User Request:
"{user_query}"

### Database Schema:
{schema_context}

Rules:
1. Fix the error described in the message
2. Return ONLY the valid SQL query
3. Keep query logic consistent with User Request
```

**Common Fixes**:
- Column ambiguity → Add table aliases
- Missing column → Use correct column name
- Syntax error → Fix DuckDB syntax

---

## Streaming Implementation

### Thinking + Content Streaming

```python
async def stream_sql_generation(self, query: str, schema: str):
    config = types.GenerateContentConfig(
        thinking_config=types.ThinkingConfig(
            mode=types.ThinkingMode.THINKING
        )
    )
    
    response = await asyncio.to_thread(
        self.client.models.generate_content_stream,
        model=self.model,
        contents=query_prompt,
        config=config
    )
    
    async for chunk in response:
        if hasattr(chunk, 'thought'):
            yield {"type": "thought", "text": chunk.thought.text}
        if hasattr(chunk, 'text'):
            yield {"type": "content", "text": chunk.text}
```

**Frontend receives**:
```json
{"type": "thought", "text": "I need to find hospitals in the David district..."}
{"type": "content", "text": "SELECT name, geom FROM ..."}
```

---

## Error Handling

### 1. Data Unavailable
```sql
-- ERROR: DATA_UNAVAILABLE
-- Requested: crime statistics
-- Available: hospitals, schools, admin boundaries
```

→ System detects marker and returns helpful error

### 2. SQL Execution Error
```
Error: column "hospitals" does not exist
```

→ Send to `correct_sql()` → LLM fixes → Retry

### 3. Rate Limiting
```python
try:
    response = await self.client.models.generate_content(...)
except Exception as e:
    if "rate limit" in str(e).lower():
        await asyncio.sleep(1)
        # Retry
```

---

## Performance Optimizations

### Caching

**Not currently implemented**, but recommended:
```python
from functools import lru_cache

@lru_cache(maxsize=100)
async def cached_sql_generation(query_hash: str):
    ...
```

### Token Management

- **Minimize Context**: Only send relevant table schemas
- **Semantic Search**: Pre-filter to top 15 tables
- **Batch Requests**: Combine multiple LLM calls where possible

---

## Prompt Engineering Best Practices

### 1. Be Explicit
❌ "Generate SQL for this query"
✅ "Generate DuckDB SQL with spatial functions. Include 'geom' column. Use ILIKE for text matching."

### 2. Provide Examples
```
Example:
Input: "hospitals in Panama"
Output: SELECT name, geom FROM panama_healthsites_geojson WHERE amenity='hospital'
```

### 3. Use Constraints
```
Rules:
- Return ONLY SQL (no markdown, no explanation)
- Use EXACT table names from schema
- DO NOT invent columns
```

### 4. Handle Edge Cases
```
If data not available, return:
-- ERROR: DATA_UNAVAILABLE
```

### 5. Structure Output
```
Return valid JSON:
{"name": "...", "emoji": "..."}
```

---

## Testing

### Manual Testing

```python
llm = LLMGateway()

# Test intent detection
intent = await llm.detect_intent("Show me hospitals", [])
print(intent)  # Should be "MAP_REQUEST"

# Test SQL generation
sql = await llm.generate_analytical_sql("hospitals in David", schema, [])
print(sql)  # Should be valid SELECT query
```

### Prompt Iteration

1. **Test with real queries**
2. **Analyze failures**  
3. **Update prompt**
4. **Re-test**

---

## Next Steps

- **Core Services**: [CORE_SERVICES.md](CORE_SERVICES.md)
- **Data Flow**: [../DATA_FLOW.md](../DATA_FLOW.md)
- **API Reference**: [API_ENDPOINTS.md](API_ENDPOINTS.md)