File size: 7,859 Bytes
4851501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Data Ingestion Scripts

Documentation for scripts that download and process geographic datasets.

---

## Overview

Data ingestion scripts in `backend/scripts/` automate downloading and processing of various data sources:

- OpenStreetMap via Geofabrik
- Humanitarian Data Exchange (HDX)
- World Bank Open Data
- STRI GIS Portal
- Kontur Population
- Global datasets

---

##Scripts Reference

### 1. download_geofabrik.py

Downloads OpenStreetMap data for Panama from Geofabrik.

**Usage**:
```bash
cd backend
python scripts/download_geofabrik.py
```

**What it downloads**:
- Roads network
- Buildings
- POI (points of interest)
- Natural features

**Output**: GeoJSON files in `backend/data/osm/`

**Schedule**: Run monthly for updates

---

### 2. download_hdx_panama.py

Downloads administrative boundaries from Humanitarian Data Exchange.

**Usage**:
```bash
python scripts/download_hdx_panama.py
```

**Downloads**:
- Level 1: Provinces (10 features)
- Level 2: Districts (81 features)
- Level 3: Corregimientos (679 features)

**Output**: `backend/data/hdx/pan_admin{1,2,3}_2021.geojson`

**Schedule**: Annual updates

---

### 3. download_worldbank.py

Downloads World Bank development indicators.

**Usage**:
```bash
python scripts/download_worldbank.py
```

**Indicators**:
- GDP per capita
- Life expectancy
- Access to electricity
- Internet usage
- And more...

**Output**: `backend/data/worldbank/indicators.geojson`

**Processing**: Joins indicator data with country geometries

---

### 4. download_stri_data.py

Downloads datasets from STRI GIS Portal.

**Usage**:
```bash
python scripts/download_stri_data.py
```

**Downloads**:
- Protected areas
- Forest cover
- Environmental datasets

**Output**: `backend/data/stri/*.geojson`

**Note**: Uses ArcGIS REST API

---

### 5. stri_catalog_scraper.py

Discovers and catalogs all available STRI datasets.

**Usage**:
```bash
python scripts/stri_catalog_scraper.py
```

**Output**: JSON catalog of 100+ STRI datasets with metadata

**Features**:
- Priority scoring
- Temporal dataset detection
- REST endpoint generation

---

### 6. create_province_layer.py

Creates province-level socioeconomic data layer.

**Usage**:
```bash
python scripts/create_province_layer.py
```

**Combines**:
- INEC Census data
- MPI (poverty index)
- Administrative geometries

**Output**: `backend/data/socioeconomic/province_socioeconomic.geojson`

---

### 7. download_global_datasets.py

Downloads global reference datasets.

**Usage**:
```bash
python scripts/download_global_datasets.py
```

**Downloads**:
- Natural Earth country boundaries
- Global admin boundaries
- Reference layers

**Output**: `backend/data/global/*.geojson`

---

### 8. register_global_datasets.py

Registers global datasets in catalog.json.

**Usage**:
```bash
python scripts/register_global_datasets.py
```

**Action**: Adds dataset entries to `backend/data/catalog.json`

---

## Adding New Data Sources

### Step-by-Step Guide

#### 1. Create Download Script

Create `backend/scripts/download_mycustom_data.py`:

```python
import geopandas as gpd
import requests
from pathlib import Path

def download_custom_data():
    """Download custom dataset."""
    
    # Define output path
    output_dir = Path(__file__).parent.parent / "data" / "custom"
    output_dir.mkdir(parents=True, exist_ok=True)
    
    # Download data
    url = "https://example.com/data.geojson"
    response = requests.get(url)
    
    # Save as GeoJSON
    output_file = output_dir / "custom_data.geojson"
    with open(output_file, 'w') as f:
        f.write(response.text)
    
    print(f"Downloaded to {output_file}")

if __name__ == "__main__":
    download_custom_data()
```

#### 2. Update Catalog

Add entry to `backend/data/catalog.json`:

```json
{
  "custom_data": {
    "path": "custom/custom_data.geojson",
    "description": "Short description for display",
    "semantic_description": "Detailed description mentioning key concepts that help AI discovery. Include what data represents, coverage area, and typical use cases.",
    "categories": ["infrastructure"],
    "tags": ["roads", "transport", "panama"],
    "schema": {
      "columns": ["name", "type", "length_km", "geom"],
      "geometry_type": "LineString"
    }
  }
}
```

**Key Fields**:
- `path`: Relative path from `backend/data/`
- `description`: Human-readable short description
- `semantic_description`: Detailed description for AI semantic search
- `categories`: Classify dataset
- `tags`: Keywords for filtering
- `schema`: Optional column and geometry info

#### 3. Regenerate Embeddings

```bash
cd backend
rm data/embeddings.npy
python -c "from backend.core.semantic_search import get_semantic_search; get_semantic_search()"
```

This generates vector embeddings for the new dataset description.

#### 4. Test Discovery

```bash
# Start backend
uvicorn backend.main:app --reload

# Test query
curl -X POST http://localhost:8000/api/chat \
  -H "Content-Type: application/json" \
  -d '{"message":"show me [your new data]","history":[]}'
```

Verify the AI can discover and query your dataset.

---

## Script Templates

### Basic Download Template

```python
#!/usr/bin/env python3
"""
Download script for [DATA SOURCE NAME]
"""

import geopandas as gpd
import requests
from pathlib import Path
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
DATA_URL = "https://example.com/data.geojson"
OUTPUT_DIR = Path(__file__).parent.parent / "data" / "category"

def download_data():
    """Download and process data."""
    OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
    
    logger.info(f"Downloading from {DATA_URL}")
    
    # Download
    gdf = gpd.read_file(DATA_URL)
    
    # Process (example: project to WGS84)
    if gdf.crs and gdf.crs != "EPSG:4326":
        gdf = gdf.to_crs("EPSG:4326")
    
    # Save
    output_file = OUTPUT_DIR / "data.geojson"
    gdf.to_file(output_file, driver="GeoJSON")
    
    logger.info(f"Saved {len(gdf)} features to {output_file}")

if __name__ == "__main__":
    download_data()
```

### API Download Template

```python
import requests
import json

def download_from_api():
    """Download from REST API."""
    
    # Query API
    params = {
        "where": "country='Panama'",
        "outFields": "*",
        "f": "geojson"
    }
    
    response = requests.get(API_URL, params=params)
    response.raise_for_status()
    
    # Parse and save
    geojson = response.json()
    
    with open(output_file, 'w') as f:
        json.dump(geojson, f)
```

---

## Data Processing Best Practices

### 1. Coordinate System

Always save in WGS84 (EPSG:4326):
```python
if gdf.crs != "EPSG:4326":
    gdf = gdf.to_crs("EPSG:4326")
```

### 2. Column Naming

Use lowercase with underscores:
```python
gdf.columns = gdf.columns.str.lower().str.replace(' ', '_')
```

### 3. Null Handling

Remove or fill nulls:
```python
gdf['name'] = gdf['name'].fillna('Unknown')
gdf = gdf.dropna(subset=['geom'])
```

### 4. Simplify Geometry (if needed)

For large datasets:
```python
gdf['geom'] = gdf['geom'].simplify(tolerance=0.001)
```

### 5. Validate GeoJSON

```python
import json

# Check valid JSON
with open(output_file) as f:
    data = json.load(f)
    
assert data['type'] == 'FeatureCollection'
assert 'features' in data
```

---

## Data Sources Reference

| Source | Script | Frequency | Size |
|--------|--------|-----------|------|
| Geofabrik (OSM) | `download_geofabrik.py` | Monthly | ~100MB |
| HDX | `download_hdx_panama.py` | Annual | ~5MB |
| World Bank | `download_worldbank.py` | Annual | ~1MB |
| STRI | `download_stri_data.py` | As updated | ~50MB |
| Kontur | Manual | Quarterly | ~200MB |

---

## Next Steps

- **Dataset Sources**: [../data/DATASET_SOURCES.md](../data/DATASET_SOURCES.md)
- **Core Services**: [CORE_SERVICES.md](CORE_SERVICES.md)