GeoQuery / backend /scripts /stri_catalog_scraper.py
GerardCB's picture
Deploy to Spaces (Final Clean)
4851501
#!/usr/bin/env python3
"""
STRI GIS Portal Catalog Scraper
Discovers and catalogs datasets from the Smithsonian Tropical Research Institute
GIS Portal using the ArcGIS Online API.
"""
import requests
import json
from pathlib import Path
import logging
from datetime import datetime
from typing import Dict, List, Optional
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DATA_DIR = Path(__file__).parent.parent / "data" / "stri"
METADATA_DIR = DATA_DIR / "metadata"
# STRI GIS Portal ArcGIS Online Organization ID
STRI_ORG_ID = "nzS0F0zdNLvs7nc8"
ARCGIS_BASE_URL = "https://www.arcgis.com/sharing/rest"
# Priority keywords for dataset selection
HIGH_PRIORITY_KEYWORDS = [
"panama", "national", "country", "forest", "cover", "protected", "areas",
"land use", "biodiversity", "climate", "water", "infrastructure",
"administrative", "boundaries", "poverty", "population"
]
# Keywords to deprioritize (site-specific, not national)
LOW_PRIORITY_KEYWORDS = [
"bci", "barro colorado", "island", "pena blanca", "site-specific",
"trail", "sensor", "camera", "plot"
]
# Temporal dataset patterns (to identify multi-year series)
TEMPORAL_PATTERNS = [
r"\b(19\d{2}|20\d{2})\b", # Years like 1992, 2021
r"edition\s+(19\d{2}|20\d{2})",
r"version\s+(19\d{2}|20\d{2})"
]
def search_stri_portal(query: str = "panama", num: int = 100, start: int = 1) -> Dict:
"""
Search the STRI GIS Portal using ArcGIS REST API
Args:
query: Search query string (default: "panama" for Panama-specific datasets)
num: Number of results per page (max 100)
start: Starting position
Returns:
JSON response with search results
"""
search_url = f"{ARCGIS_BASE_URL}/search"
# Search for Panama-related datasets within STRI organization
params = {
"q": f'orgid:{STRI_ORG_ID} AND (panama OR panamá)',
"f": "json",
"num": num,
"start": start,
"sortField": "modified",
"sortOrder": "desc"
}
try:
response = requests.get(search_url, params=params, timeout=30)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Failed to search portal: {e}")
return {}
def get_item_details(item_id: str) -> Optional[Dict]:
"""Get detailed metadata for a specific item"""
details_url = f"{ARCGIS_BASE_URL}/content/items/{item_id}"
params = {"f": "json"}
try:
response = requests.get(details_url, params=params, timeout=30)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Failed to get item {item_id}: {e}")
return None
def extract_year_from_title(title: str) -> Optional[int]:
"""Extract year from dataset title"""
for pattern in TEMPORAL_PATTERNS:
match = re.search(pattern, title, re.IGNORECASE)
if match:
year_str = match.group(1) if match.lastindex else match.group(0)
try:
return int(year_str)
except ValueError:
continue
return None
def calculate_priority_score(item: Dict) -> float:
"""
Calculate priority score for a dataset based on:
- National vs site-specific coverage
- Relevance keywords
- Data type (prefer Feature Services)
- Recency
"""
score = 50.0 # Baseline
title = item.get("title", "").lower() if item.get("title") else ""
description = item.get("description", "").lower() if item.get("description") else ""
tags = " ".join(item.get("tags", [])).lower() if item.get("tags") else ""
item_type = item.get("type", "")
combined_text = f"{title} {description} {tags}"
# Boost for high-priority keywords
for keyword in HIGH_PRIORITY_KEYWORDS:
if keyword in combined_text:
score += 5
# Penalty for low-priority (site-specific) keywords
for keyword in LOW_PRIORITY_KEYWORDS:
if keyword in combined_text:
score -= 15
# Prefer Feature Services (queryable GIS data)
if "Feature Service" in item_type:
score += 20
elif "Map Service" in item_type:
score += 10
# Boost for temporal datasets
if extract_year_from_title(title):
score += 10
# Boost for recent updates
modified = item.get("modified", 0)
if modified:
# Convert milliseconds to years since 2020
years_since_2020 = (modified - 1577836800000) / (365.25 * 24 * 60 * 60 * 1000)
score += min(years_since_2020 * 2, 10) # Max +10 for very recent
return score
def build_rest_endpoint(item: Dict) -> Optional[str]:
"""Construct the REST endpoint URL for a Feature Service"""
item_type = item.get("type", "")
if "Feature Service" not in item_type:
return None
# Standard ArcGIS REST endpoint pattern
url = item.get("url")
if url and "/FeatureServer" in url:
# Assume layer 0 if not specified
if not url.endswith(("FeatureServer", "FeatureServer/")):
return url
return f"{url.rstrip('/')}/0"
# Fallback: construct from item ID
item_id = item.get("id")
if item_id:
return f"https://services.arcgis.com/{STRI_ORG_ID}/arcgis/rest/services/{item_id}/FeatureServer/0"
return None
def catalog_datasets(max_datasets: int = 100) -> List[Dict]:
"""
Scrape the STRI portal and build a prioritized catalog
Args:
max_datasets: Maximum number of datasets to retrieve
Returns:
List of dataset metadata dictionaries
"""
datasets = []
start = 1
batch_size = 100
logger.info("Scraping STRI GIS Portal...")
while len(datasets) < max_datasets:
logger.info(f"Fetching items {start} to {start + batch_size - 1}...")
results = search_stri_portal(num=batch_size, start=start)
if not results or "results" not in results:
break
items = results["results"]
if not items:
break
for item in items:
# Focus on Feature Services (queryable geospatial data)
if "Feature Service" not in item.get("type", ""):
continue
# Calculate priority
priority = calculate_priority_score(item)
# Extract year if temporal
year = extract_year_from_title(item.get("title", ""))
# Build REST endpoint
rest_endpoint = build_rest_endpoint(item)
dataset = {
"id": item.get("id"),
"title": item.get("title"),
"description": item.get("description", ""),
"type": item.get("type"),
"tags": item.get("tags", []),
"modified": item.get("modified"),
"modified_date": datetime.fromtimestamp(
item.get("modified", 0) / 1000
).isoformat() if item.get("modified") else None,
"url": item.get("url"),
"rest_endpoint": rest_endpoint,
"year": year,
"priority_score": round(priority, 2)
}
datasets.append(dataset)
# Check if there are more results
if start + batch_size > results.get("total", 0):
break
start += batch_size
# Sort by priority score
datasets.sort(key=lambda x: x["priority_score"], reverse=True)
logger.info(f"Found {len(datasets)} Feature Service datasets")
return datasets[:max_datasets]
def identify_temporal_groups(datasets: List[Dict]) -> Dict[str, List[Dict]]:
"""
Group datasets by base name to identify temporal series
Returns:
Dictionary mapping base name to list of datasets with years
"""
temporal_groups = {}
for dataset in datasets:
if dataset["year"] is None:
continue
# Remove year from title to get base name
title = dataset["title"]
base_name = re.sub(r'\b(19\d{2}|20\d{2})\b', '', title)
base_name = re.sub(r'\s+', ' ', base_name).strip()
base_name = re.sub(r'edition|version', '', base_name, flags=re.IGNORECASE).strip()
if base_name not in temporal_groups:
temporal_groups[base_name] = []
temporal_groups[base_name].append(dataset)
# Filter to groups with multiple years
temporal_groups = {
k: sorted(v, key=lambda x: x["year"])
for k, v in temporal_groups.items()
if len(v) > 1
}
return temporal_groups
def save_catalog(datasets: List[Dict], temporal_groups: Dict[str, List[Dict]]):
"""Save catalog and temporal groups to JSON files"""
METADATA_DIR.mkdir(parents=True, exist_ok=True)
# Save main catalog
catalog_path = METADATA_DIR / "stri_catalog.json"
with open(catalog_path, 'w') as f:
json.dump({
"generated_at": datetime.now().isoformat(),
"total_datasets": len(datasets),
"datasets": datasets
}, f, indent=2)
logger.info(f"Saved catalog to {catalog_path}")
# Save temporal groups
if temporal_groups:
temporal_path = METADATA_DIR / "stri_temporal_groups.json"
with open(temporal_path, 'w') as f:
json.dump({
"generated_at": datetime.now().isoformat(),
"num_groups": len(temporal_groups),
"groups": temporal_groups
}, f, indent=2)
logger.info(f"Saved {len(temporal_groups)} temporal groups to {temporal_path}")
def main():
"""Main execution"""
logger.info("=== STRI GIS Portal Catalog Scraper ===")
# Catalog datasets
datasets = catalog_datasets(max_datasets=100)
# Identify temporal groups
temporal_groups = identify_temporal_groups(datasets)
# Save results
save_catalog(datasets, temporal_groups)
# Print summary
logger.info("\n" + "="*60)
logger.info(f"✅ Cataloged {len(datasets)} datasets")
logger.info(f"📊 Found {len(temporal_groups)} temporal dataset groups")
if temporal_groups:
logger.info("\nTemporal Groups:")
for base_name, group in list(temporal_groups.items())[:5]:
years = [d["year"] for d in group]
logger.info(f" - {base_name}: {years}")
logger.info("\nTop 10 Priority Datasets:")
for i, dataset in enumerate(datasets[:10], 1):
logger.info(f" {i}. [{dataset['priority_score']:.1f}] {dataset['title']}")
logger.info("="*60)
if __name__ == "__main__":
main()