""" Response Formatter Service Handles formatting of query results into citations, charts, GeoJSON layers, and raw data for the frontend. Separates presentation logic from execution logic. """ from typing import List, Dict, Any, Optional import uuid class ResponseFormatter: @staticmethod def generate_citations(tables: List[str], features: Optional[List[Dict]] = None) -> List[str]: """Generates readable citations based on table names and returned features.""" citations = [] processed = set() # Check explicit table list for table in tables: table = table.lower() if table in processed: continue if "universit" in table: citations.append("Universities Data (OpenStreetMap, 2024)") elif "school" in table or "education" in table: citations.append("Education Facilities (OpenStreetMap, 2024)") elif "hospital" in table or "health" in table: citations.append("Health Facilities (OpenStreetMap, 2024)") elif "airport" in table: citations.append("Airports Data (OpenStreetMap, 2024)") elif "road" in table: citations.append("Road Network (OpenStreetMap, 2024)") elif "population" in table or "census" in table: citations.append("Panama Census Data (INEC, 2023)") elif "admin" in table or "boundar" in table: if "Admin Boundaries" not in processed: citations.append("Panama Administrative Boundaries (HDX COD-AB, 2021)") processed.add("Admin Boundaries") continue processed.add(table) # Fallback check on features if no specific tables cited but admin data returned if not citations and features: if any(k.startswith("adm") for k in features[0].get("properties", {}).keys()): citations.append("Panama Administrative Boundaries (HDX COD-AB, 2021)") return list(set(citations)) @staticmethod def generate_chart_data(sql: str, features: List[Dict]) -> Optional[Dict[str, Any]]: """ Generates Chart.js compatible data structure if the query looks aggregative. """ if not features: return None # Heuristic: If GROUP BY or ORDER BY ... LIMIT is used, likely suitable for charting # Or if explicitly requested via intent (logic handled in caller, but we check SQL signature here too) # Try to find string (label) and number (value) in properties try: chart_items = [] x_key = "name" y_key = "value" x_label = "Feature" y_label = "Value" # 1. Analyze properties to find X (Label) and Y (Value) if features: sample_props = features[0].get("properties", {}) # Exclude system keys valid_keys = [k for k in sample_props.keys() if k not in ["geom", "geometry", "style", "layer_name", "layer_id", "choropleth", "fillColor", "color"]] # Find Y (Value) - First numeric column for k in valid_keys: if isinstance(sample_props[k], (int, float)) and not k.endswith("_id") and not k.endswith("_code"): y_key = k y_label = k.replace("_", " ").title() if "sqkm" in k: y_label = "Area (km²)" elif "pop" in k: y_label = "Population" elif "count" in k: y_label = "Count" break # Find X (Label) - First string column (excluding IDs if possible) for k in valid_keys: if isinstance(sample_props[k], str) and "name" in k: x_key = k x_label = k.replace("_", " ").title().replace("Name", "").strip() or "Region" break # 2. Build Data for f in features: props = f.get("properties", {}) label = props.get(x_key) value = props.get(y_key) if label is not None and value is not None: chart_items.append({"name": str(label), "value": value}) if chart_items: # auto-sort descending chart_items.sort(key=lambda x: x["value"], reverse=True) return { "type": "bar", "title": f"{y_label} by {x_label}", "data": chart_items[:15], # Limit to top 15 for readability "xKey": "name", "yKey": "value", "xAxisLabel": x_label, "yAxisLabel": y_label } except Exception as e: print(f"Error generating chart data: {e}") return None return None @staticmethod def prepare_raw_data(features: List[Dict]) -> List[Dict]: """Cleans feature properties for display in the raw data table.""" raw_data = [] if not features: return raw_data for f in features: props = f.get("properties", {}).copy() # Serialize props = ResponseFormatter._serialize_properties(props) # Remove system/visual properties for key in ["geom", "geometry", "style", "layer_name", "layer_id", "choropleth", "fillColor", "color"]: props.pop(key, None) raw_data.append(props) return raw_data @staticmethod def format_geojson_layer(query: str, geojson: Dict[str, Any], features: List[Dict], layer_name: str, layer_emoji: str = "📍", point_style: Optional[str] = None, admin_levels: Optional[List[str]] = None) -> tuple[Dict[str, Any], str, str]: """ styles the GeoJSON layer and generates metadata (ID, Name, Choropleth). Args: point_style: "icon" for emoji markers, "circle" for simple colored circles, None for auto-detect """ # 0. Serialize properties to avoid datetime errors if features: for f in features: if "properties" in f: f["properties"] = ResponseFormatter._serialize_properties(f["properties"]) # 2. Random/Distinct Colors # Palette of distinct colors (avoiding pure blue which is default) palette = [ "#E63946", # Red "#F4A261", # Orange "#2A9D8F", # Teal "#E9C46A", # Yellow "#9C6644", # Brown "#D62828", # Dark Red "#8338EC", # Purple "#3A86FF", # Blue-ish (but distinct) "#FB5607", # Orange-Red "#FF006E", # Pink ] # Deterministic color based on query hash to keep it stable for same query color_idx = abs(hash(query)) % len(palette) layer_color = palette[color_idx] # Choropleth Logic # 1. Identify valid numeric column choropleth_col = None if features: sample = features[0].get("properties", {}) valid_numerics = [ k for k, v in sample.items() if isinstance(v, (int, float)) and k not in ["layer_id", "style"] and not k.endswith("_code") and not k.endswith("_id") ] # Prioritize 'population', 'area', 'count' priority_cols = ["population", "pop", "count", "num", "density", "area_sqkm", "area"] for p in priority_cols: matches = [c for c in valid_numerics if p in c] if matches: choropleth_col = matches[0] break # Fallback to first numeric if not choropleth_col and valid_numerics: choropleth_col = valid_numerics[0] # 2. Enable if appropriate if choropleth_col: # Check if values actually vary values = [f["properties"].get(choropleth_col, 0) for f in features] if len(set(values)) > 1: geojson["properties"]["choropleth"] = { "enabled": True, "palette": "viridis", "column": choropleth_col, "scale": "log" if "pop" in choropleth_col or "density" in choropleth_col else "linear" } else: # Apply random color if NOT a choropleth geojson["properties"]["style"] = { "color": layer_color, "fillColor": layer_color, "opacity": 0.8, "fillOpacity": 0.4 } layer_id = str(uuid.uuid4())[:8] geojson["properties"]["layer_name"] = layer_name geojson["properties"]["layer_id"] = layer_id # Add Point Marker Configuration # Use pointStyle to determine whether to show icon or circle marker_icon = None marker_style = "circle" # default if point_style == "icon": # Use emoji icon for categorical POI marker_icon = layer_emoji marker_style = "icon" elif point_style == "circle": # Use simple circle for large datasets or density viz marker_icon = None marker_style = "circle" else: # Auto-detect: default to icon for now (backward compatibility) marker_icon = layer_emoji marker_style = "icon" geojson["properties"]["pointMarker"] = { "icon": marker_icon, "style": marker_style, "color": layer_color, "size": 32 } return geojson, layer_id, layer_name @staticmethod def generate_data_summary(features: List[Dict]) -> str: """Generates a text summary of the features for the LLM explanation context.""" if features: sample_names = [] for f in features[:5]: props = f.get("properties", {}) name = props.get("adm3_name") or props.get("adm2_name") or props.get("adm1_name") or props.get("name") or "Feature" area = props.get("area_sqkm") if area: sample_names.append(f"{name} ({float(area):.1f} km²)") else: sample_names.append(name) return f"Found {len(features)} features. Sample: {', '.join(sample_names)}" return f"Found {len(features)} features. Sample: {', '.join(sample_names)}" else: return "No features found matching the query." @staticmethod def _serialize_properties(properties: Dict[str, Any]) -> Dict[str, Any]: """Recursively converts datetime/date objects to strings for JSON serialization.""" from datetime import datetime, date serialized = {} for k, v in properties.items(): if isinstance(v, (datetime, date)): serialized[k] = v.isoformat() elif isinstance(v, dict): serialized[k] = ResponseFormatter._serialize_properties(v) elif isinstance(v, list): serialized[k] = [ x.isoformat() if isinstance(x, (datetime, date)) else x for x in v ] else: serialized[k] = v return serialized