File size: 9,053 Bytes
070dbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
=== requirements.txt ===
streamlit
Pillow

=== config.py ===
import os

# --- General Configuration ---
APP_TITLE = "Sora 2 Simulator: Text & Image to Video Generation"
ANYCODER_LINK = "https://huggingface.co/spaces/akhaliq/anycoder"
ANYCODER_TEXT = "Built with anycoder"

# --- Generation Parameters ---
MIN_DURATION_S = 4
MAX_DURATION_S = 120
DEFAULT_DURATION_S = 30
GENERATION_COST_PER_SECOND = 0.05 # Mock cost

# --- Mock Output Configuration ---
# NOTE: Since actual binary files cannot be generated or shipped, 
# we use mock placehoolder URLs/data.
MOCK_VIDEO_URL = "https://storage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4" # Public domain sample video
MOCK_AUDIO_DATA = "placeholder_audio.mp3" 

# Mock audio data (Base64 encoded silence or small placeholder)
# In a real app, this would be a loaded audio file.
# Using a descriptive placeholder here for pure Python execution.
MOCK_AUDIO_DESCRIPTION = "Simulated high-fidelity audio track generated based on prompt."

# --- UI Texts ---
DISCLAIMER = (
    "🚨 **IMPORTANT SIMULATION NOTICE:** The actual OpenAI Sora 2 model is not publicly available. "
    "This application is a sophisticated simulation demonstrating the expected capabilities and workflow "
    "of a next-generation video generation interface. Video output is a public domain placeholder."
)

=== utils.py ===
import time
import random
from config import MOCK_VIDEO_URL, MOCK_AUDIO_DESCRIPTION

def simulate_video_generation(prompt: str, duration_s: int, generate_audio: bool) -> dict:
    """
    Simulates the intensive process of generating a video using a large AI model.
    The mock duration is proportional to the requested video length.
    """
    
    # Calculate simulated generation time (e.g., 0.5s per 10 seconds of video)
    base_time = 3.0
    time_per_second = 0.5 
    
    simulated_delay = base_time + (duration_s / 10 * time_per_second)
    
    # Cap the delay for user experience
    if simulated_delay > 15:
        simulated_delay = 15 + random.uniform(0, 5) # Max 20s simulation
        
    time.sleep(simulated_delay)
    
    # Mock generation metadata
    output = {
        "status": "success",
        "video_url": MOCK_VIDEO_URL,
        "duration_s": duration_s,
        "prompt_used": prompt,
        "model_version": "Sora 2.1 (Simulated)",
        "cost": round(duration_s * 0.05 + random.uniform(0.5, 1.5), 2), # Mock Cost calculation
        "audio_description": MOCK_AUDIO_DESCRIPTION if generate_audio else None
    }
    
    return output

=== streamlit_app.py ===
import streamlit as st
from PIL import Image
import io
from config import (
    APP_TITLE, ANYCODER_LINK, ANYCODER_TEXT,
    MIN_DURATION_S, MAX_DURATION_S, DEFAULT_DURATION_S,
    GENERATION_COST_PER_SECOND, DISCLAIMER
)
from utils import simulate_video_generation

# --- Configuration and Setup ---
st.set_page_config(
    page_title=APP_TITLE,
    layout="wide",
    initial_sidebar_state="expanded"
)

# Initialize Session State
if 'generation_output' not in st.session_state:
    st.session_state.generation_output = None
if 'is_running' not in st.session_state:
    st.session_state.is_running = False

def clear_output():
    """Clears the previous generation results."""
    st.session_state.generation_output = None

def handle_generation(prompt, image_file, duration_s, generate_audio):
    """Handles the submission and simulation process."""
    if st.session_state.is_running:
        st.warning("A generation task is already running. Please wait.")
        return

    st.session_state.is_running = True
    clear_output()

    input_prompt = prompt
    if image_file:
        # Simulate processing the image input
        input_prompt = f"Image-to-Video: {image_file.name}. Prompt: {prompt}"

    try:
        # Display feedback and run simulation
        with st.spinner(f"Generating high-fidelity video sequence ({duration_s}s)... This may take up to 20 seconds."):
            output = simulate_video_generation(input_prompt, duration_s, generate_audio)
            st.session_state.generation_output = output
        
        st.balloons()
        st.success("Video generation complete!")

    except Exception as e:
        st.error(f"An error occurred during simulation: {e}")
    finally:
        st.session_state.is_running = False
        st.rerun()


# --- Sidebar UI ---
with st.sidebar:
    st.title("Sora 2 Controls")
    st.markdown(
        f"""
        **Maximum Duration:** {MAX_DURATION_S // 60}m {MAX_DURATION_S % 60}s  
        **Input Modes:** Text-to-Video, Image-to-Video
        """
    )
    
    # Custom CSS for the sidebar link
    st.markdown(
        f"""
        <style>
            .footer-link {{
                font-size: 0.8rem;
                color: #888888;
                margin-top: 15px;
            }}
        </style>
        <div class="footer-link">
            <a href="{ANYCODER_LINK}" target="_blank">{ANYCODER_TEXT}</a>
        </div>
        """,
        unsafe_allow_html=True
    )

# --- Main Application UI ---
st.markdown(f"## {APP_TITLE}")
st.caption(DISCLAIMER)
st.divider()

# Input Form
with st.form("sora_generation_form", clear_on_submit=False):
    col1, col2 = st.columns([3, 1])
    
    with col1:
        prompt = st.text_area(
            "🎬 Describe your desired scene (Text-to-Video)",
            placeholder="A golden retriever wearing a tiny chef's hat, baking bread on a cloud, cinematic 8K, highly detailed.",
            height=100
        )
    
    with col2:
        image_file = st.file_uploader(
            "🖼️ Upload starting image (Image-to-Video)",
            type=["png", "jpg", "jpeg"],
            help="Optional: Start the video generation from a specific image."
        )

        if image_file:
            st.image(image_file, caption="Input Image Preview", use_column_width=True)

    st.subheader("Generation Settings")
    
    settings_col1, settings_col2, settings_col3 = st.columns(3)
    
    with settings_col1:
        video_duration = st.slider(
            "⏱️ Video Duration (seconds)",
            min_value=MIN_DURATION_S,
            max_value=MAX_DURATION_S,
            value=DEFAULT_DURATION_S,
            step=1,
            help=f"Generates videos from {MIN_DURATION_S}s up to 2 minutes."
        )
    
    with settings_col2:
        generate_audio = st.checkbox(
            "🔊 Generate Realistic Audio Track",
            value=True,
            help="Sora 2 includes synchronized, high-fidelity audio generation."
        )
        
    with settings_col3:
        # Mock Cost Display
        mock_cost = round(video_duration * GENERATION_COST_PER_SECOND, 2)
        st.metric(
            label="Estimated Token Cost (Mock)",
            value=f"${mock_cost:.2f}",
            delta=f"${GENERATION_COST_PER_SECOND} / second"
        )
    
    st.markdown("---")
    
    # Disable button if inputs are missing
    is_disabled = not (prompt or image_file) or st.session_state.is_running
    
    submit_button = st.form_submit_button(
        label="⚡ Generate Video (Simulated)",
        type="primary",
        disabled=is_disabled
    )
    
    if submit_button:
        if not prompt and image_file:
             st.warning("Please provide a text prompt to guide the video generation, even if uploading an image.")
        elif not prompt and not image_file:
            st.error("Please provide either a text description or an image file to start.")
        else:
            handle_generation(prompt, image_file, video_duration, generate_audio)


# --- Output Display ---
if st.session_state.generation_output:
    output = st.session_state.generation_output
    st.subheader("🎥 Sora 2 Simulated Output")
    
    st.info(f"Generated successfully in {output['duration_s']} seconds using **{output['model_version']}**.")
    
    # Layout for metadata and video
    output_col1, output_col2 = st.columns([1, 2])
    
    with output_col1:
        st.markdown("**Generation Metadata**")
        st.json({
            "Prompt Input": output['prompt_used'][:100] + "...",
            "Output Duration": f"{output['duration_s']} seconds",
            "Simulated Cost": f"${output['cost']:.2f}",
        })
        
        st.download_button(
            label="⬇️ Download Video (Mock File)",
            data="This is a simulated download link.",
            file_name="sora_output_simulated.mp4",
            mime="text/plain",
            type="secondary"
        )

    with output_col2:
        st.markdown("### Video Output (Public Placeholder)")
        st.video(output['video_url'], format="video/mp4", start_time=0)
        
        if output['audio_description']:
            st.markdown("### Audio Track")
            st.markdown(f"**Description:** {output['audio_description']}")
            # Streamlit audio component using a simple placeholder representation
            st.audio(data=b'', format="audio/mp3", loop=False)
            st.caption("Audio component is displayed, simulating a synchronized audio track.")