Spaces:
No application file
No application file
File size: 9,053 Bytes
070dbbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
=== requirements.txt ===
streamlit
Pillow
=== config.py ===
import os
# --- General Configuration ---
APP_TITLE = "Sora 2 Simulator: Text & Image to Video Generation"
ANYCODER_LINK = "https://huggingface.co/spaces/akhaliq/anycoder"
ANYCODER_TEXT = "Built with anycoder"
# --- Generation Parameters ---
MIN_DURATION_S = 4
MAX_DURATION_S = 120
DEFAULT_DURATION_S = 30
GENERATION_COST_PER_SECOND = 0.05 # Mock cost
# --- Mock Output Configuration ---
# NOTE: Since actual binary files cannot be generated or shipped,
# we use mock placehoolder URLs/data.
MOCK_VIDEO_URL = "https://storage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4" # Public domain sample video
MOCK_AUDIO_DATA = "placeholder_audio.mp3"
# Mock audio data (Base64 encoded silence or small placeholder)
# In a real app, this would be a loaded audio file.
# Using a descriptive placeholder here for pure Python execution.
MOCK_AUDIO_DESCRIPTION = "Simulated high-fidelity audio track generated based on prompt."
# --- UI Texts ---
DISCLAIMER = (
"🚨 **IMPORTANT SIMULATION NOTICE:** The actual OpenAI Sora 2 model is not publicly available. "
"This application is a sophisticated simulation demonstrating the expected capabilities and workflow "
"of a next-generation video generation interface. Video output is a public domain placeholder."
)
=== utils.py ===
import time
import random
from config import MOCK_VIDEO_URL, MOCK_AUDIO_DESCRIPTION
def simulate_video_generation(prompt: str, duration_s: int, generate_audio: bool) -> dict:
"""
Simulates the intensive process of generating a video using a large AI model.
The mock duration is proportional to the requested video length.
"""
# Calculate simulated generation time (e.g., 0.5s per 10 seconds of video)
base_time = 3.0
time_per_second = 0.5
simulated_delay = base_time + (duration_s / 10 * time_per_second)
# Cap the delay for user experience
if simulated_delay > 15:
simulated_delay = 15 + random.uniform(0, 5) # Max 20s simulation
time.sleep(simulated_delay)
# Mock generation metadata
output = {
"status": "success",
"video_url": MOCK_VIDEO_URL,
"duration_s": duration_s,
"prompt_used": prompt,
"model_version": "Sora 2.1 (Simulated)",
"cost": round(duration_s * 0.05 + random.uniform(0.5, 1.5), 2), # Mock Cost calculation
"audio_description": MOCK_AUDIO_DESCRIPTION if generate_audio else None
}
return output
=== streamlit_app.py ===
import streamlit as st
from PIL import Image
import io
from config import (
APP_TITLE, ANYCODER_LINK, ANYCODER_TEXT,
MIN_DURATION_S, MAX_DURATION_S, DEFAULT_DURATION_S,
GENERATION_COST_PER_SECOND, DISCLAIMER
)
from utils import simulate_video_generation
# --- Configuration and Setup ---
st.set_page_config(
page_title=APP_TITLE,
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize Session State
if 'generation_output' not in st.session_state:
st.session_state.generation_output = None
if 'is_running' not in st.session_state:
st.session_state.is_running = False
def clear_output():
"""Clears the previous generation results."""
st.session_state.generation_output = None
def handle_generation(prompt, image_file, duration_s, generate_audio):
"""Handles the submission and simulation process."""
if st.session_state.is_running:
st.warning("A generation task is already running. Please wait.")
return
st.session_state.is_running = True
clear_output()
input_prompt = prompt
if image_file:
# Simulate processing the image input
input_prompt = f"Image-to-Video: {image_file.name}. Prompt: {prompt}"
try:
# Display feedback and run simulation
with st.spinner(f"Generating high-fidelity video sequence ({duration_s}s)... This may take up to 20 seconds."):
output = simulate_video_generation(input_prompt, duration_s, generate_audio)
st.session_state.generation_output = output
st.balloons()
st.success("Video generation complete!")
except Exception as e:
st.error(f"An error occurred during simulation: {e}")
finally:
st.session_state.is_running = False
st.rerun()
# --- Sidebar UI ---
with st.sidebar:
st.title("Sora 2 Controls")
st.markdown(
f"""
**Maximum Duration:** {MAX_DURATION_S // 60}m {MAX_DURATION_S % 60}s
**Input Modes:** Text-to-Video, Image-to-Video
"""
)
# Custom CSS for the sidebar link
st.markdown(
f"""
<style>
.footer-link {{
font-size: 0.8rem;
color: #888888;
margin-top: 15px;
}}
</style>
<div class="footer-link">
<a href="{ANYCODER_LINK}" target="_blank">{ANYCODER_TEXT}</a>
</div>
""",
unsafe_allow_html=True
)
# --- Main Application UI ---
st.markdown(f"## {APP_TITLE}")
st.caption(DISCLAIMER)
st.divider()
# Input Form
with st.form("sora_generation_form", clear_on_submit=False):
col1, col2 = st.columns([3, 1])
with col1:
prompt = st.text_area(
"🎬 Describe your desired scene (Text-to-Video)",
placeholder="A golden retriever wearing a tiny chef's hat, baking bread on a cloud, cinematic 8K, highly detailed.",
height=100
)
with col2:
image_file = st.file_uploader(
"🖼️ Upload starting image (Image-to-Video)",
type=["png", "jpg", "jpeg"],
help="Optional: Start the video generation from a specific image."
)
if image_file:
st.image(image_file, caption="Input Image Preview", use_column_width=True)
st.subheader("Generation Settings")
settings_col1, settings_col2, settings_col3 = st.columns(3)
with settings_col1:
video_duration = st.slider(
"⏱️ Video Duration (seconds)",
min_value=MIN_DURATION_S,
max_value=MAX_DURATION_S,
value=DEFAULT_DURATION_S,
step=1,
help=f"Generates videos from {MIN_DURATION_S}s up to 2 minutes."
)
with settings_col2:
generate_audio = st.checkbox(
"🔊 Generate Realistic Audio Track",
value=True,
help="Sora 2 includes synchronized, high-fidelity audio generation."
)
with settings_col3:
# Mock Cost Display
mock_cost = round(video_duration * GENERATION_COST_PER_SECOND, 2)
st.metric(
label="Estimated Token Cost (Mock)",
value=f"${mock_cost:.2f}",
delta=f"${GENERATION_COST_PER_SECOND} / second"
)
st.markdown("---")
# Disable button if inputs are missing
is_disabled = not (prompt or image_file) or st.session_state.is_running
submit_button = st.form_submit_button(
label="⚡ Generate Video (Simulated)",
type="primary",
disabled=is_disabled
)
if submit_button:
if not prompt and image_file:
st.warning("Please provide a text prompt to guide the video generation, even if uploading an image.")
elif not prompt and not image_file:
st.error("Please provide either a text description or an image file to start.")
else:
handle_generation(prompt, image_file, video_duration, generate_audio)
# --- Output Display ---
if st.session_state.generation_output:
output = st.session_state.generation_output
st.subheader("🎥 Sora 2 Simulated Output")
st.info(f"Generated successfully in {output['duration_s']} seconds using **{output['model_version']}**.")
# Layout for metadata and video
output_col1, output_col2 = st.columns([1, 2])
with output_col1:
st.markdown("**Generation Metadata**")
st.json({
"Prompt Input": output['prompt_used'][:100] + "...",
"Output Duration": f"{output['duration_s']} seconds",
"Simulated Cost": f"${output['cost']:.2f}",
})
st.download_button(
label="⬇️ Download Video (Mock File)",
data="This is a simulated download link.",
file_name="sora_output_simulated.mp4",
mime="text/plain",
type="secondary"
)
with output_col2:
st.markdown("### Video Output (Public Placeholder)")
st.video(output['video_url'], format="video/mp4", start_time=0)
if output['audio_description']:
st.markdown("### Audio Track")
st.markdown(f"**Description:** {output['audio_description']}")
# Streamlit audio component using a simple placeholder representation
st.audio(data=b'', format="audio/mp3", loop=False)
st.caption("Audio component is displayed, simulating a synchronized audio track.") |