File size: 8,307 Bytes
24b390f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os, time, sys, asyncio
from typing import List, Dict
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
# ---- Windows event loop fix ----
if sys.platform.startswith("win"):
try:
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
except Exception:
pass
# ---- Env ----
load_dotenv()
API_KEY = os.getenv("API_KEY")
HOST = os.getenv("HOST")
Embed_Model_Name = os.getenv("EMBEDDING_MODEL_NAME")
Reranker_Model_Name = os.getenv("RERANKER_MODEL_NAME")
K = int(os.getenv("K", "8"))
TOP_N = int(os.getenv("TOP_N", "5"))
RPM_LIMIT = 2
MIN_SECONDS_BETWEEN = 30
N_DIM = 384
# ---- OpenAI client ----
client = None
if API_KEY:
client = OpenAI(api_key=API_KEY, base_url="https://genai.ghaymah.systems")
# ---- Your RAG bits ----
from embedder import EmbeddingModel
from Reranker import Reranker
def safe_chat_complete(model: str, messages: List[Dict], max_tokens: int = 9000) -> str:
delays = [5, 10, 20]
attempt = 0
while True:
try:
resp = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=0.3,
timeout=60,
)
return resp.choices[0].message.content
except Exception as e:
msg = str(e)
if "429" in msg or "Rate Limit" in msg:
if attempt < len(delays):
time.sleep(delays[attempt]); attempt += 1
continue
raise
def build_single_system_context(query: str, max_total_chars: int = 9000, k: int = 10) -> str:
Embedder = EmbeddingModel(model_name=Embed_Model_Name)
RankerModel = Reranker(model_name=Reranker_Model_Name)
results = Embedder.retrieve_top_k_remote_texts(query, k=k, HOST=HOST)
Top_sort_results = RankerModel.rerank_results(query, results, top_n=TOP_N)
snippets, sources = [], []
for p in Top_sort_results:
txt = (p.get("text") or "").strip()
if not txt: continue
src = p.get("source")
if isinstance(src, str) and src: sources.append(src)
snippets.append(txt)
if not snippets:
return ("You are a strict RAG assistant. No context was retrieved from the vector store for this query. "
"If the answer is not present, say you don’t know.")
header = ("You are a strict RAG assistant. Answer ONLY using the provided context snippets. "
"If the answer is not present, say you don’t know. ")
body_budget = max_total_chars - len(header)
body_parts, used = [], 0
for snip in snippets:
piece = snip + "\n\n"
if used + len(piece) <= body_budget:
body_parts.append(piece); used += len(piece)
else:
break
seen, uniq_sources = set(), []
for s in sources:
if s not in seen:
uniq_sources.append(s); seen.add(s)
footer = "Sources:\n" + "\n".join(f"- {s}" for s in uniq_sources) + "\n" if uniq_sources else ""
return (header + "".join(body_parts) + footer).strip()
SYSTEM_SEED = "You are a strict RAG assistant. Answer ONLY using the provided context."
def init_state():
return {"messages": [{"role": "system", "content": SYSTEM_SEED}], "last_call_ts": None}
def can_call_now(state: dict) -> bool:
last = state.get("last_call_ts")
return True if last is None else (time.time() - last) >= MIN_SECONDS_BETWEEN
def record_call_time(state: dict):
state["last_call_ts"] = time.time()
def respond(user_message: str, state: dict):
# Basic env checks – we still show a bot response so the UI proves it’s working
missing = []
if not API_KEY: missing.append("API_KEY")
if not HOST: missing.append("HOST")
if not Embed_Model_Name: missing.append("EMBEDDING_MODEL_NAME")
if not Reranker_Model_Name: missing.append("RERANKER_MODEL_NAME")
if missing:
return (f"Config missing: {', '.join(missing)}. Set them in your .env and restart."), state
state["messages"].append({"role": "user", "content": user_message})
if not can_call_now(state):
remaining = int(MIN_SECONDS_BETWEEN - (time.time() - (state.get("last_call_ts") or 0)))
remaining = max(1, remaining)
msg = f"Rate limit in effect. Please wait ~{remaining} seconds."
state["messages"].append({"role": "assistant", "content": msg})
return msg, state
rag_ctx = build_single_system_context(query=user_message, max_total_chars=5000, k=K)
msgs = [{"role": "system", "content": rag_ctx}]
msgs.extend([m for m in state["messages"] if m["role"] != "system"][-10:])
try:
reply = safe_chat_complete("DeepSeek-V3-0324", msgs, max_tokens=1000)
record_call_time(state)
except Exception as e:
reply = f"Request failed: {e}"
state["messages"].append({"role": "assistant", "content": reply})
return reply, state
# ------------------- Gradio UI: messages API (Gradio >= 5) -------------------
with gr.Blocks(title="Ghaymah Chatbot") as demo:
gr.Markdown("# 🤖 Ghaymah Chatbot ")
gr.Markdown(
"Vector store: **Connected** \n"
f"Embedder: `{Embed_Model_Name or 'unset'}` \n"
f"RPM limit: **{RPM_LIMIT}** (min {MIN_SECONDS_BETWEEN}s between calls) \n"
)
state = gr.State(init_state()) # {"messages": [...], "last_call_ts": ...}
# Start with an explicit empty list so it's never None
chatbot = gr.Chatbot(label="Chat", height=520, type="messages", value=[])
with gr.Row():
txt = gr.Textbox(
placeholder="Ask anything about the Ghaymah documentation…",
label="Your message",
lines=2,
autofocus=True,
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
# Step 1: add a user message immediately
def _on_user_submit(user_input, chat_messages):
try:
if not user_input:
return "", (chat_messages or [])
chat_messages = chat_messages or [] # guard for None
updated = chat_messages + [{"role": "user", "content": user_input}]
print("[on_submit] user:", user_input)
return "", updated
except Exception as e:
print("[on_submit][ERROR]", repr(e))
# keep textbox text so you can retry; don't mutate chat on error
return user_input, (chat_messages or [])
txt.submit(_on_user_submit, [txt, chatbot], [txt, chatbot])
send_btn.click(_on_user_submit, [txt, chatbot], [txt, chatbot])
# Step 2: call backend and append assistant message
def _bot_step(chat_messages, state):
try:
chat_messages = chat_messages or []
last_user = None
for msg in reversed(chat_messages):
if msg.get("role") == "user" and isinstance(msg.get("content"), str):
last_user = msg["content"]
break
if last_user is None:
print("[bot_step] no user message found")
return chat_messages, state
print("[bot_step] responding to:", last_user)
bot_reply, new_state = respond(last_user, state) # <-- your 2-arg respond
updated = chat_messages + [{"role": "assistant", "content": bot_reply}]
return updated, new_state
except Exception as e:
print("[bot_step][ERROR]", repr(e))
# show the error in the chat so you see *something* in the UI
updated = (chat_messages or []) + [
{"role": "assistant", "content": f"⚠️ Internal error: {e}"}
]
return updated, state
# Submit (Enter)
txt.submit(_on_user_submit, [txt, chatbot], [txt, chatbot])\
.then(_bot_step, [chatbot, state], [chatbot, state])
# Click (Send)
send_btn.click(_on_user_submit, [txt, chatbot], [txt, chatbot])\
.then(_bot_step, [chatbot, state], [chatbot, state])
def _clear():
print("[clear] resetting state and chat")
return [], init_state()
clear_btn.click(_clear, outputs=[chatbot, state])
if __name__ == "__main__":
demo.queue()
demo.launch(debug=True)
|