File size: 9,576 Bytes
24b390f 82bf06f 24b390f 82bf06f 24b390f 6312dcf 82bf06f 24b390f efdab21 27946eb 24b390f 82bf06f 24b390f 82bf06f 24b390f 5846540 24b390f 82bf06f 24b390f 82bf06f 24b390f 82bf06f 24b390f 82bf06f 24b390f bbe3c6c 82bf06f bbe3c6c 82bf06f bbe3c6c 82bf06f bbe3c6c 3c6c917 bbe3c6c 94093e6 82bf06f 94093e6 bbe3c6c 5ce1f24 bbe3c6c 24b390f 82bf06f 24b390f efdab21 24b390f efdab21 82bf06f 24b390f efdab21 24b390f 5846540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os, time, sys, asyncio
from typing import List, Dict
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
import base64
from embedder import EmbeddingModel
from Reranker import Reranker
if sys.platform.startswith("win"):
try:
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
except Exception:
pass
# Env
load_dotenv()
APP_Name = os.getenv("APP_Name", "RAG chatbot in Ghaymah documentation")
APP_Version = os.getenv("APP_Version", "1.0.0")
API_KEY = os.getenv("API_KEY")
HOST = os.getenv("HOST")
Embed_Model_Name = os.getenv("EMBEDDING_MODEL_NAME")
Reranker_Model_Name = os.getenv("RERANKER_MODEL_NAME")
K = int(os.getenv("K", "8"))
TOP_N = int(os.getenv("TOP_N", "5"))
RPM_LIMIT = 20
MIN_SECONDS_BETWEEN = 3
N_DIM = 384
# OpenAI client
client = None
if API_KEY:
client = OpenAI(api_key=API_KEY, base_url="https://genai.ghaymah.systems")
CSS = """
.app-header{display:flex;align-items:center;gap:12px;justify-content:center;margin:6px 0 16px}
.app-header img{height:60px;border-radius:12px}
.app-title{font-weight:800;font-size:28px;line-height:1.1}
.app-sub{opacity:.7;font-size:14px}
"""
COMPANY_LOGO = "download.jpeg"
OWNER_NAME = "ENG. Ahmed Yasser El Sharkawy"
def safe_chat_complete(model: str, messages: List[Dict], max_tokens: int = 9000) -> str:
delays = [5, 10, 20]
attempt = 0
while True:
try:
resp = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=0.3,
timeout=60,
)
return resp.choices[0].message.content
except Exception as e:
msg = str(e)
if "429" in msg or "Rate Limit" in msg:
if attempt < len(delays):
time.sleep(delays[attempt]); attempt += 1
continue
raise
def logo_data_uri(path: str) -> str:
if not os.path.exists(path):
return ""
ext = os.path.splitext(path)[1].lower()
mime = {
".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg",
".webp": "image/webp", ".gif": "image/gif"
}.get(ext, "image/png")
with open(path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
return f"data:{mime};base64,{b64}"
def build_single_system_context(query: str, max_total_chars: int = 9000, k: int = 10) -> str:
Embedder = EmbeddingModel(model_name=Embed_Model_Name)
RankerModel = Reranker(model_name=Reranker_Model_Name)
results = Embedder.retrieve_top_k_remote_texts(query, k=k, HOST=HOST)
Top_sort_results = RankerModel.rerank_results(query, results, top_n=TOP_N)
snippets, sources = [], []
for p in Top_sort_results:
txt = (p.get("text") or "").strip()
if not txt: continue
src = p.get("source")
if isinstance(src, str) and src: sources.append(src)
snippets.append(txt)
if not snippets:
return ("You are ghaymah expert . follow instraction to be strict RAG assistant. No context was retrieved from the vector store for this query. "
"If the answer is not present, say do not mention in ghaymah documentation.")
header = ("You are ghaymah expert. follow instraction to be strict RAG assistant. Answer ONLY using the provided context snippets. "
"If the answer is not present, say do not mention in ghaymah documentation.")
body_budget = max_total_chars - len(header)
body_parts, used = [], 0
for snip in snippets:
piece = snip + "\n\n"
if used + len(piece) <= body_budget:
body_parts.append(piece); used += len(piece)
else:
break
seen, uniq_sources = set(), []
for s in sources:
if s not in seen:
uniq_sources.append(s); seen.add(s)
footer = "Sources:\n" + "\n".join(f"- {s}" for s in uniq_sources) + "\n" if uniq_sources else ""
return (header + "".join(body_parts) + footer).strip()
SYSTEM_SEED = "You are ghaymah expert. follow instraction to be strict RAG assistant. Answer ONLY using the provided context snippets."
def init_state():
return {"messages": [{"role": "system", "content": SYSTEM_SEED}], "last_call_ts": None}
def can_call_now(state: dict) -> bool:
last = state.get("last_call_ts")
return True if last is None else (time.time() - last) >= MIN_SECONDS_BETWEEN
def record_call_time(state: dict):
state["last_call_ts"] = time.time()
def respond(user_message: str, state: dict):
missing = []
if not API_KEY: missing.append("API_KEY")
if not HOST: missing.append("HOST")
if not Embed_Model_Name: missing.append("EMBEDDING_MODEL_NAME")
if not Reranker_Model_Name: missing.append("RERANKER_MODEL_NAME")
if missing:
return (f"Config missing: {', '.join(missing)}. Set them in your .env and restart."), state
state["messages"].append({"role": "user", "content": user_message})
if not can_call_now(state):
remaining = int(MIN_SECONDS_BETWEEN - (time.time() - (state.get("last_call_ts") or 0)))
remaining = max(1, remaining)
msg = f"Rate limit in effect. Please wait ~{remaining} seconds."
state["messages"].append({"role": "assistant", "content": msg})
return msg, state
rag_ctx = build_single_system_context(query=user_message, max_total_chars=5000, k=K)
msgs = [{"role": "system", "content": rag_ctx}]
msgs.extend([m for m in state["messages"] if m["role"] != "system"][-10:])
try:
reply = safe_chat_complete("DeepSeek-V3-0324", msgs, max_tokens=1000)
record_call_time(state)
except Exception as e:
reply = f"Request failed: {e}"
state["messages"].append({"role": "assistant", "content": reply})
return reply, state
# Gradio UI
with gr.Blocks(title=f"{APP_Name} v{APP_Version}", css=CSS) as demo:
header_logo_src = logo_data_uri(COMPANY_LOGO)
logo_html = f"<img src='{header_logo_src}' alt='logo'>" if header_logo_src else ""
gr.HTML(f"""
<div class="app-header">
{logo_html}
<div class="app-header-text">
<div class="app-title">{APP_Name}</div>
<div class="app-sub">v{APP_Version} • {OWNER_NAME}</div>
</div>
</div>
""")
state = gr.State(init_state())
with gr.Row():
# LEFT: chat + input
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Chat", height=520, type="messages", value=[])
txt = gr.Textbox(
placeholder="Ask anything about the Ghaymah documentation…",
label="Your message",
lines=2,
autofocus=True,
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
# RIGHT
with gr.Column(scale=1, min_width=300):
gr.Image(
value="download.jpeg",
interactive=False,
show_label=False,
container=False,
show_fullscreen_button=False,
)
gr.Markdown(
"Vector store: **Connected** \n"
f"Embedder: `{Embed_Model_Name or 'unset'}` \n"
f"RPM limit: **{RPM_LIMIT}** \n"
)
def _on_user_submit(user_input, chat_messages):
try:
if not user_input:
return "", (chat_messages or [])
chat_messages = chat_messages or []
updated = chat_messages + [{"role": "user", "content": user_input}]
# print("[on_submit] user:", user_input)
return "", updated
except Exception as e:
print("[on_submit][ERROR]", repr(e))
return user_input, (chat_messages or [])
txt.submit(_on_user_submit, [txt, chatbot], [txt, chatbot])
send_btn.click(_on_user_submit, [txt, chatbot], [txt, chatbot])
def _bot_step(chat_messages, state):
try:
chat_messages = chat_messages or []
last_user = None
for msg in reversed(chat_messages):
if msg.get("role") == "user" and isinstance(msg.get("content"), str):
last_user = msg["content"]
break
if last_user is None:
print("[bot_step] no user message found")
return chat_messages, state
# print("[bot_step] responding to:", last_user)
bot_reply, new_state = respond(last_user, state)
updated = chat_messages + [{"role": "assistant", "content": bot_reply}]
return updated, new_state
except Exception as e:
# print("[bot_step][ERROR]", repr(e))
updated = (chat_messages or []) + [
{"role": "assistant", "content": f"⚠️ Internal error: {e}"}
]
return updated, state
txt.submit(_on_user_submit, [txt, chatbot], [txt, chatbot])\
.then(_bot_step, [chatbot, state], [chatbot, state])
send_btn.click(_on_user_submit, [txt, chatbot], [txt, chatbot])\
.then(_bot_step, [chatbot, state], [chatbot, state])
def _clear():
print("[clear] resetting state and chat")
return [], init_state()
clear_btn.click(_clear, outputs=[chatbot, state])
if __name__ == "__main__":
demo.queue()
demo.launch(debug=True,server_name="0.0.0.0" ,server_port=7860)
|