File size: 16,443 Bytes
8cc48e6 a9adb92 8cc48e6 064ad6f ab76656 8cc48e6 728b9ce 064ad6f 8cc48e6 a9adb92 ab76656 8cc48e6 3415aa5 728b9ce 3415aa5 8cc48e6 728b9ce 8cc48e6 a9adb92 8cc48e6 728b9ce 8cc48e6 064ad6f ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 728b9ce 3415aa5 064ad6f 3415aa5 064ad6f 3415aa5 a9adb92 ab76656 728b9ce ab76656 3415aa5 a9adb92 3415aa5 728b9ce a9adb92 3415aa5 a9adb92 ab76656 3415aa5 ab76656 3415aa5 a9adb92 3415aa5 728b9ce 8cc48e6 a9adb92 8cc48e6 a9adb92 3415aa5 a9adb92 3415aa5 a9adb92 8cc48e6 3415aa5 8cc48e6 064ad6f 728b9ce a9adb92 064ad6f ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 064ad6f 728b9ce ab76656 728b9ce 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 3415aa5 ab76656 8cc48e6 728b9ce 8cc48e6 3415aa5 ab76656 8cc48e6 a9adb92 8cc48e6 064ad6f a9adb92 ab76656 064ad6f 8cc48e6 064ad6f a9adb92 728b9ce a9adb92 3415aa5 a9adb92 064ad6f 728b9ce a9adb92 ab76656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
import faiss
import pickle
import numpy as np
from typing import List, Dict
from docarray import Document, DocumentArray
from jina import Executor, requests
from sentence_transformers import SentenceTransformer
from transformers import AutoProcessor, AutoModelForCausalLM, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration, BitsAndBytesConfig
from pdfminer.high_level import extract_text
import fitz
from PIL import Image
import traceback
import torch
import re
import io
class MultimodalRAGExecutor(Executor):
def __init__(
self,
llm_model_name: str = "Qwen/Qwen2.5-3B-Instruct",
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
vision_model: str = "Salesforce/blip-image-captioning-base",
index_file: str = "faiss_index.bin",
metadata_file: str = "metadata.pkl",
dim: int = 384,
**kwargs,
):
super().__init__(**kwargs)
self.llm_model_name = llm_model_name
self.embedding_model = embedding_model
self.vision_model_name = vision_model
self.index_file = index_file
self.metadata_file = metadata_file
self.dim = dim
self.hf_token = os.getenv("HUGGINGFACE_TOKEN", "")
if self.hf_token:
print(f"Token: {self.hf_token[:10]}...")
else:
print("No token")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device: {self.device}")
# Load embedding model
print(f"Loading embeddings: {embedding_model}")
self.embedder = SentenceTransformer(embedding_model)
print("Embeddings loaded")
# Load BLIP vision
print(f"Loading vision: {vision_model}")
try:
self.vision_processor = BlipProcessor.from_pretrained(vision_model)
self.vision_model = BlipForConditionalGeneration.from_pretrained(
vision_model,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
self.vision_model.eval()
print("Vision loaded")
except Exception as e:
print(f"Vision error: {e}")
self.vision_processor = None
self.vision_model = None
# Load Qwen text model
print(f"Loading text: {llm_model_name}")
try:
self.tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
if self.device == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
self.llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_name,
quantization_config=quantization_config,
device_map="auto",
torch_dtype=torch.float16
)
else:
self.llm_model = AutoModelForCausalLM.from_pretrained(
llm_model_name,
device_map="auto",
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
self.llm_model.eval()
print("Text model loaded")
except Exception as e:
print(f"Text error: {e}")
self.llm_model = None
self.tokenizer = None
self._load_or_create_index()
def _load_or_create_index(self):
if os.path.exists(self.index_file) and os.path.exists(self.metadata_file):
try:
self.index = faiss.read_index(self.index_file)
with open(self.metadata_file, "rb") as f:
self.metadata = pickle.load(f)
print(f"Index loaded: {self.index.ntotal} vectors")
except Exception as e:
print(f"Index error: {e}")
self.index = faiss.IndexFlatL2(self.dim)
self.metadata = []
else:
self.index = faiss.IndexFlatL2(self.dim)
self.metadata = []
print("New index created")
def _get_embedding(self, text: str) -> np.ndarray:
embedding = self.embedder.encode(text, convert_to_numpy=True)
return embedding.astype(np.float32)
def _analyze_image(self, image: Image.Image) -> str:
if not self.vision_processor or not self.vision_model:
return "Image analysis unavailable"
try:
inputs = self.vision_processor(image, return_tensors="pt").to(self.device)
with torch.no_grad():
out = self.vision_model.generate(**inputs, max_length=100)
caption = self.vision_processor.decode(out[0], skip_special_tokens=True)
text = "a detailed description of"
inputs = self.vision_processor(image, text, return_tensors="pt").to(self.device)
with torch.no_grad():
out = self.vision_model.generate(**inputs, max_length=120)
detailed = self.vision_processor.decode(out[0], skip_special_tokens=True)
return f"Caption: {caption}. Details: {detailed}"
except Exception as e:
print(f"Image error: {e}")
return "Image analysis failed"
def _extract_text_from_pdf(self, pdf_path: str) -> List[str]:
texts = []
try:
doc = fitz.open(pdf_path)
for page_num, page in enumerate(doc, start=1):
text = page.get_text("text")
if text and text.strip():
texts.append(f"Page {page_num}:\n{text.strip()}")
doc.close()
except Exception as e:
print(f"Text extraction error: {e}")
return texts
def _extract_images_from_pdf(self, pdf_path: str) -> List[Dict]:
images_data = []
try:
doc = fitz.open(pdf_path)
for page_num, page in enumerate(doc, start=1):
image_list = page.get_images(full=True)
for img_idx, img in enumerate(image_list):
try:
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
width, height = pil_image.size
if width >= 100 and height >= 100:
images_data.append({
'image': pil_image,
'page': page_num,
'index': img_idx
})
except Exception as e:
print(f"Image extract error page {page_num}: {e}")
continue
doc.close()
except Exception as e:
print(f"PDF image error: {e}")
return images_data
def _generate_answer(self, prompt: str, context: str) -> str:
if not self.llm_model or not self.tokenizer:
return self._extractive_answer(prompt, context)
try:
inputs = self.tokenizer([prompt], return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
max_new_tokens=256,
temperature=0.3,
do_sample=True,
top_p=0.9,
repetition_penalty=1.1
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, outputs)
]
answer = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return answer.strip()
except Exception as e:
print(f"Generation error: {e}")
return self._extractive_answer(prompt, context)
def _extractive_answer(self, query: str, context: str) -> str:
sentences = re.split(r'[.!?]+', context)
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
query_words = set(query.lower().split())
scored = []
for sent in sentences[:30]:
sent_words = set(sent.lower().split())
overlap = len(query_words.intersection(sent_words))
for word in query_words:
if len(word) > 4 and word in sent.lower():
overlap += 2
if overlap > 0:
scored.append((overlap, sent))
scored.sort(reverse=True, key=lambda x: x[0])
if scored:
top_sentences = [s for _, s in scored[:3]]
return ". ".join(top_sentences) + "."
return "Could not find relevant information"
@requests(on="/upload")
def upload(self, docs: DocumentArray, **kwargs):
try:
for doc in docs:
file_path = doc.uri
if file_path.startswith("file://"):
file_path = file_path.replace("file://", "")
if not os.path.exists(file_path) or not file_path.endswith(".pdf"):
continue
print(f"Processing: {file_path}")
text_chunks = self._extract_text_from_pdf(file_path)
text_count = 0
for chunk in text_chunks:
paragraphs = chunk.split("\n\n")
for para in paragraphs:
if para.strip() and len(para.strip()) > 50:
emb = self._get_embedding(para.strip())
self.index.add(np.array([emb]))
self.metadata.append({
"type": "text",
"content": para.strip()
})
text_count += 1
print(f"Indexed {text_count} text chunks")
images_data = self._extract_images_from_pdf(file_path)
image_count = 0
for img_data in images_data:
description = self._analyze_image(img_data['image'])
img_path = os.path.abspath(
f"img_p{img_data['page']}_i{img_data['index']}.png"
)
img_data['image'].save(img_path, "PNG")
embed_text = f"Image from page {img_data['page']}: {description}"
emb = self._get_embedding(embed_text)
self.index.add(np.array([emb]))
self.metadata.append({
"type": "image",
"content": f"file://{img_path}",
"description": description,
"page": img_data['page']
})
image_count += 1
print(f"Analyzed {image_count} images")
# Save index
faiss.write_index(self.index, self.index_file)
with open(self.metadata_file, "wb") as f:
pickle.dump(self.metadata, f)
summary = f"Upload complete!\n"
summary += f"Total vectors: {self.index.ntotal}\n"
summary += f"Text chunks: {text_count}\n"
summary += f"Images: {image_count}\n"
summary += f"Using Qwen 2.5 & BLIP"
return DocumentArray([Document(text=summary)])
except Exception as e:
error_msg = f"Upload failed:\n{traceback.format_exc()}"
print(error_msg)
return DocumentArray([Document(text=error_msg)])
@requests(on="/query")
def query(self, docs: DocumentArray, **kwargs):
results = DocumentArray()
if self.index.ntotal == 0:
return DocumentArray([
Document(text="No documents uploaded. Please upload PDF first.")
])
for doc in docs:
try:
query_text = doc.text
query_emb = self._get_embedding(query_text)
D, I = self.index.search(np.array([query_emb]), k=10)
context_parts = []
matched_images = []
image_descriptions = []
for idx in I[0]:
if idx < len(self.metadata):
meta = self.metadata[idx]
if meta["type"] == "text":
context_parts.append(meta["content"])
elif meta["type"] == "image":
matched_images.append(Document(uri=meta["content"]))
image_descriptions.append(
f"[Image Page {meta.get('page', '?')}]: {meta['description']}"
)
context_text = "\n\n".join(context_parts[:5])
if image_descriptions:
context_text += "\n\nRelevant Images:\n" + "\n".join(image_descriptions[:3])
if len(context_text) > 2500:
context_text = context_text[:2500] + "..."
# Qwen chat format
messages = [
{
"role": "system",
"content": "You are a helpful research assistant. Answer accurately based on context."
},
{
"role": "user",
"content": f"""Context from research paper:
{context_text}
Question: {query_text}
Provide a clear and accurate answer based only on the context."""
}
]
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
answer = self._generate_answer(prompt, context_text)
# Clean answer
answer = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', answer, flags=re.DOTALL)
answer = re.sub(r'^(Question|Answer|Context):\s*', '', answer, flags=re.IGNORECASE)
answer = answer.strip()
answer_doc = Document(text=answer)
if matched_images:
answer_doc.chunks = DocumentArray(matched_images[:4])
results.append(answer_doc)
except Exception as e:
error_msg = f"Query failed: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
results.append(Document(text=error_msg))
return results
@requests(on="/stats")
def stats(self, docs: DocumentArray, **kwargs):
text_count = sum(1 for m in self.metadata if m["type"] == "text")
image_count = sum(1 for m in self.metadata if m["type"] == "image")
stats_text = (
f"Index Statistics:\n"
f"Total vectors: {self.index.ntotal}\n"
f"Text chunks: {text_count}\n"
f"Images: {image_count}\n"
f"Using Qwen 2.5 & BLIP"
)
return DocumentArray([Document(text=stats_text)])
@requests(on="/reset")
def reset(self, docs: DocumentArray, **kwargs):
try:
self.index = faiss.IndexFlatL2(self.dim)
self.metadata = []
if os.path.exists(self.index_file):
os.remove(self.index_file)
if os.path.exists(self.metadata_file):
os.remove(self.metadata_file)
return DocumentArray([Document(text="Index reset successfully")])
except Exception as e:
return DocumentArray([Document(text=f"Reset failed: {str(e)}")])] |