Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,24 +2,33 @@ import streamlit as st
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from PIL import Image
|
| 5 |
-
from cellpose import models
|
| 6 |
|
| 7 |
-
def inference(image, model_path, **model_params):
|
| 8 |
-
img = image
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
if __name__ == "__main__":
|
| 16 |
|
| 17 |
-
st.title("Sartorius Cell Segmentation")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
uploaded_img = st.file_uploader(label="Upload neuronal cell image")
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
segment = st.button("Perform segmentation")
|
|
|
|
| 23 |
if uploaded_img is not None and segment:
|
| 24 |
img = Image.open(uploaded_img)
|
| 25 |
img = np.array(img)
|
|
@@ -31,17 +40,16 @@ if __name__ == "__main__":
|
|
| 31 |
"resample": True,
|
| 32 |
}
|
| 33 |
with st.spinner("Performing segmentation. This might take a while..."):
|
| 34 |
-
preds, flows =
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
ax1.
|
| 42 |
-
ax2.
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
st.pyplot(fig)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from PIL import Image
|
| 5 |
+
from cellpose import models
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
@st.cache()
|
| 9 |
+
def load_model(model_path):
|
| 10 |
+
inf_model = models.CellposeModel(gpu=False, pretrained_model=model_path)
|
| 11 |
+
return inf_model
|
| 12 |
|
| 13 |
|
| 14 |
if __name__ == "__main__":
|
| 15 |
|
| 16 |
+
st.title("Sartorius Neuronal Cell Segmentation")
|
| 17 |
+
|
| 18 |
+
inf_model = load_model(
|
| 19 |
+
model_path="./cellpose_residual_on_style_on_concatenation_off_fold1_ep_649_cv_0.2834"
|
| 20 |
+
)
|
| 21 |
|
| 22 |
uploaded_img = st.file_uploader(label="Upload neuronal cell image")
|
| 23 |
+
|
| 24 |
+
with st.expander("View input image"):
|
| 25 |
+
if uploaded_img is not None:
|
| 26 |
+
st.image(uploaded_img)
|
| 27 |
+
else:
|
| 28 |
+
st.warning("Please upload an image")
|
| 29 |
+
|
| 30 |
segment = st.button("Perform segmentation")
|
| 31 |
+
|
| 32 |
if uploaded_img is not None and segment:
|
| 33 |
img = Image.open(uploaded_img)
|
| 34 |
img = np.array(img)
|
|
|
|
| 40 |
"resample": True,
|
| 41 |
}
|
| 42 |
with st.spinner("Performing segmentation. This might take a while..."):
|
| 43 |
+
preds, flows, _ = inf_model.eval([img], **model_params)
|
| 44 |
+
|
| 45 |
+
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
| 46 |
+
ax1.axis("off")
|
| 47 |
+
ax2.axis("off")
|
| 48 |
+
ax3.axis("off")
|
| 49 |
+
ax1.set_title("Original Image")
|
| 50 |
+
ax1.imshow(img)
|
| 51 |
+
ax2.set_title("Segmented image")
|
| 52 |
+
ax2.imshow(preds[0])
|
| 53 |
+
ax3.set_title("Image flows")
|
| 54 |
+
ax3.imshow(flows[0][0])
|
| 55 |
+
st.pyplot(fig)
|
|
|