Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,19 +5,164 @@ import gradio as gr
|
|
| 5 |
from datasets import load_dataset, Dataset
|
| 6 |
import pandas as pd
|
| 7 |
from PIL import Image
|
| 8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from tqdm import tqdm
|
| 10 |
import logging
|
|
|
|
| 11 |
|
| 12 |
# Set up logging
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
class DatasetManager:
|
| 17 |
def __init__(self, local_images_dir="downloaded_cards"):
|
| 18 |
self.local_images_dir = local_images_dir
|
| 19 |
self.drive = None
|
| 20 |
self.dataset_name = "GotThatData/sports-cards"
|
|
|
|
| 21 |
|
| 22 |
# Create local directory if it doesn't exist
|
| 23 |
os.makedirs(local_images_dir, exist_ok=True)
|
|
@@ -32,8 +177,41 @@ class DatasetManager:
|
|
| 32 |
except Exception as e:
|
| 33 |
return False, f"Authentication failed: {str(e)}"
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if not self.drive:
|
| 38 |
return False, "Google Drive not authenticated", []
|
| 39 |
|
|
@@ -43,56 +221,52 @@ class DatasetManager:
|
|
| 43 |
file_list = self.drive.ListFile({'q': query}).GetList()
|
| 44 |
|
| 45 |
if not file_list:
|
| 46 |
-
# Try to get single file if folder is empty
|
| 47 |
file = self.drive.CreateFile({'id': drive_folder_id})
|
| 48 |
if file:
|
| 49 |
file_list = [file]
|
| 50 |
else:
|
| 51 |
return False, "No files found with the specified ID", []
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
existing_dataset = load_dataset(self.dataset_name)
|
| 57 |
-
logger.info(f"Loaded existing dataset: {self.dataset_name}")
|
| 58 |
-
# Get the current count of images to continue numbering
|
| 59 |
-
start_index = len(existing_dataset['train']) if 'train' in existing_dataset else 0
|
| 60 |
-
except Exception as e:
|
| 61 |
-
logger.info(f"No existing dataset found, starting fresh: {str(e)}")
|
| 62 |
-
start_index = 0
|
| 63 |
-
|
| 64 |
-
for i, file in enumerate(tqdm(file_list, desc="Downloading files")):
|
| 65 |
if file['mimeType'].startswith('image/'):
|
| 66 |
-
|
| 67 |
-
file_path = os.path.join(self.local_images_dir, new_filename)
|
| 68 |
|
| 69 |
# Download file
|
| 70 |
-
file.GetContentFile(
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
'original_name': file['title'],
|
| 79 |
'new_name': new_filename,
|
| 80 |
-
'image':
|
|
|
|
|
|
|
|
|
|
| 81 |
})
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
if os.path.exists(file_path):
|
| 85 |
-
os.remove(file_path)
|
| 86 |
|
| 87 |
-
return True, f"Successfully processed {len(
|
| 88 |
except Exception as e:
|
| 89 |
-
return False, f"Error
|
| 90 |
|
| 91 |
-
def update_huggingface_dataset(self,
|
| 92 |
-
"""Update the sports-cards dataset with
|
| 93 |
try:
|
| 94 |
# Create a DataFrame with the file information
|
| 95 |
-
df = pd.DataFrame(
|
| 96 |
|
| 97 |
# Create a Hugging Face Dataset from the new files
|
| 98 |
new_dataset = Dataset.from_pandas(df)
|
|
@@ -109,11 +283,11 @@ class DatasetManager:
|
|
| 109 |
# Push to Hugging Face Hub
|
| 110 |
new_dataset.push_to_hub(self.dataset_name, split="train")
|
| 111 |
|
| 112 |
-
return True, f"Successfully updated dataset '{self.dataset_name}' with {len(
|
| 113 |
except Exception as e:
|
| 114 |
return False, f"Error updating Hugging Face dataset: {str(e)}"
|
| 115 |
|
| 116 |
-
def process_pipeline(folder_id
|
| 117 |
"""Main pipeline to process images and update dataset"""
|
| 118 |
manager = DatasetManager()
|
| 119 |
|
|
@@ -122,14 +296,24 @@ def process_pipeline(folder_id, naming_convention):
|
|
| 122 |
if not auth_success:
|
| 123 |
return auth_message
|
| 124 |
|
| 125 |
-
# Step 2: Download and
|
| 126 |
-
success, message,
|
| 127 |
if not success:
|
| 128 |
return message
|
| 129 |
|
| 130 |
# Step 3: Update Hugging Face dataset
|
| 131 |
-
success, hf_message = manager.update_huggingface_dataset(
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# Gradio interface
|
| 135 |
demo = gr.Interface(
|
|
@@ -138,17 +322,12 @@ demo = gr.Interface(
|
|
| 138 |
gr.Textbox(
|
| 139 |
label="Google Drive File/Folder ID",
|
| 140 |
placeholder="Enter the ID from your Google Drive URL",
|
| 141 |
-
value="151VOxPO91mg0C3ORiioGUd4hogzP1ujm"
|
| 142 |
-
),
|
| 143 |
-
gr.Textbox(
|
| 144 |
-
label="Naming Convention",
|
| 145 |
-
placeholder="e.g., card",
|
| 146 |
-
value="sports_card"
|
| 147 |
)
|
| 148 |
],
|
| 149 |
-
outputs=gr.Textbox(label="
|
| 150 |
-
title="Sports Cards
|
| 151 |
-
description="
|
| 152 |
)
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
|
|
|
| 5 |
from datasets import load_dataset, Dataset
|
| 6 |
import pandas as pd
|
| 7 |
from PIL import Image
|
| 8 |
+
import pytesseract
|
| 9 |
+
import cv2
|
| 10 |
+
import numpy as np
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
from transformers import LayoutLMv2Processor, LayoutLMv2ForSequenceClassification
|
| 13 |
+
import torch
|
| 14 |
from tqdm import tqdm
|
| 15 |
import logging
|
| 16 |
+
import re
|
| 17 |
|
| 18 |
# Set up logging
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
+
class CardPreprocessor:
|
| 23 |
+
def __init__(self):
|
| 24 |
+
# Initialize OCR and models
|
| 25 |
+
self.processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 26 |
+
self.ocr_threshold = 0.5
|
| 27 |
+
|
| 28 |
+
def extract_text_regions(self, image):
|
| 29 |
+
"""Extract text regions from the image using OCR"""
|
| 30 |
+
try:
|
| 31 |
+
# Convert PIL Image to cv2 format
|
| 32 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 33 |
+
|
| 34 |
+
# Preprocess image for better OCR
|
| 35 |
+
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
|
| 36 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 37 |
+
thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
| 38 |
+
|
| 39 |
+
# Perform OCR
|
| 40 |
+
text = pytesseract.image_to_data(thresh, output_type=pytesseract.Output.DICT)
|
| 41 |
+
|
| 42 |
+
# Extract relevant information
|
| 43 |
+
extracted_info = {
|
| 44 |
+
'player_name': None,
|
| 45 |
+
'team': None,
|
| 46 |
+
'year': None,
|
| 47 |
+
'card_number': None,
|
| 48 |
+
'brand': None,
|
| 49 |
+
'stats': []
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# Process OCR results
|
| 53 |
+
for i, word in enumerate(text['text']):
|
| 54 |
+
if word.strip():
|
| 55 |
+
conf = int(text['conf'][i])
|
| 56 |
+
if conf > 50: # Filter low-confidence detections
|
| 57 |
+
# Try to identify year
|
| 58 |
+
year_match = re.search(r'19[0-9]{2}|20[0-2][0-9]', word)
|
| 59 |
+
if year_match:
|
| 60 |
+
extracted_info['year'] = year_match.group()
|
| 61 |
+
|
| 62 |
+
# Try to identify card number
|
| 63 |
+
card_num_match = re.search(r'#\d+|\d+/\d+', word)
|
| 64 |
+
if card_num_match:
|
| 65 |
+
extracted_info['card_number'] = card_num_match.group()
|
| 66 |
+
|
| 67 |
+
# Look for common card brands
|
| 68 |
+
brands = ['topps', 'upper deck', 'panini', 'fleer', 'bowman']
|
| 69 |
+
if word.lower() in brands:
|
| 70 |
+
extracted_info['brand'] = word.lower()
|
| 71 |
+
|
| 72 |
+
# Look for statistics (numbers with common sports stats patterns)
|
| 73 |
+
stats_match = re.search(r'\d+\s*(?:HR|RBI|AVG|YDS|TD)', word)
|
| 74 |
+
if stats_match:
|
| 75 |
+
extracted_info['stats'].append(stats_match.group())
|
| 76 |
+
|
| 77 |
+
return extracted_info
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"Error in OCR processing: {str(e)}")
|
| 81 |
+
return None
|
| 82 |
+
|
| 83 |
+
def analyze_card_condition(self, image):
|
| 84 |
+
"""Analyze the physical condition of the card"""
|
| 85 |
+
try:
|
| 86 |
+
# Convert PIL Image to cv2 format
|
| 87 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 88 |
+
|
| 89 |
+
# Edge detection for corner and edge analysis
|
| 90 |
+
edges = cv2.Canny(img_cv, 100, 200)
|
| 91 |
+
|
| 92 |
+
# Analyze corners
|
| 93 |
+
corner_regions = {
|
| 94 |
+
'top_left': edges[0:50, 0:50],
|
| 95 |
+
'top_right': edges[0:50, -50:],
|
| 96 |
+
'bottom_left': edges[-50:, 0:50],
|
| 97 |
+
'bottom_right': edges[-50:, -50:]
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
corner_scores = {k: np.mean(v) for k, v in corner_regions.items()}
|
| 101 |
+
|
| 102 |
+
# Analyze centering
|
| 103 |
+
height, width = img_cv.shape[:2]
|
| 104 |
+
center_x = width // 2
|
| 105 |
+
center_y = height // 2
|
| 106 |
+
|
| 107 |
+
# Calculate centering score
|
| 108 |
+
centering_score = self.calculate_centering(img_cv, center_x, center_y)
|
| 109 |
+
|
| 110 |
+
condition_info = {
|
| 111 |
+
'corner_scores': corner_scores,
|
| 112 |
+
'centering_score': centering_score,
|
| 113 |
+
'overall_condition': self.calculate_overall_condition(corner_scores, centering_score)
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
return condition_info
|
| 117 |
+
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.error(f"Error in condition analysis: {str(e)}")
|
| 120 |
+
return None
|
| 121 |
+
|
| 122 |
+
def calculate_centering(self, image, center_x, center_y):
|
| 123 |
+
"""Calculate the centering score of the card"""
|
| 124 |
+
try:
|
| 125 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 126 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 127 |
+
|
| 128 |
+
# Find contours
|
| 129 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 130 |
+
|
| 131 |
+
if contours:
|
| 132 |
+
# Find the largest contour (assumed to be the card)
|
| 133 |
+
main_contour = max(contours, key=cv2.contourArea)
|
| 134 |
+
x, y, w, h = cv2.boundingRect(main_contour)
|
| 135 |
+
|
| 136 |
+
# Calculate centering scores
|
| 137 |
+
x_score = abs(0.5 - (x + w/2) / image.shape[1])
|
| 138 |
+
y_score = abs(0.5 - (y + h/2) / image.shape[0])
|
| 139 |
+
|
| 140 |
+
return 1 - (x_score + y_score) / 2
|
| 141 |
+
|
| 142 |
+
return None
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Error in centering calculation: {str(e)}")
|
| 146 |
+
return None
|
| 147 |
+
|
| 148 |
+
def calculate_overall_condition(self, corner_scores, centering_score):
|
| 149 |
+
"""Calculate overall condition score"""
|
| 150 |
+
if corner_scores and centering_score:
|
| 151 |
+
corner_avg = sum(corner_scores.values()) / len(corner_scores)
|
| 152 |
+
return (corner_avg + centering_score) / 2
|
| 153 |
+
return None
|
| 154 |
+
|
| 155 |
+
def detect_orientation(self, image):
|
| 156 |
+
"""Detect if the card is portrait or landscape"""
|
| 157 |
+
width, height = image.size
|
| 158 |
+
return 'portrait' if height > width else 'landscape'
|
| 159 |
+
|
| 160 |
class DatasetManager:
|
| 161 |
def __init__(self, local_images_dir="downloaded_cards"):
|
| 162 |
self.local_images_dir = local_images_dir
|
| 163 |
self.drive = None
|
| 164 |
self.dataset_name = "GotThatData/sports-cards"
|
| 165 |
+
self.preprocessor = CardPreprocessor()
|
| 166 |
|
| 167 |
# Create local directory if it doesn't exist
|
| 168 |
os.makedirs(local_images_dir, exist_ok=True)
|
|
|
|
| 177 |
except Exception as e:
|
| 178 |
return False, f"Authentication failed: {str(e)}"
|
| 179 |
|
| 180 |
+
def process_image(self, image_path):
|
| 181 |
+
"""Process a single image and extract information"""
|
| 182 |
+
try:
|
| 183 |
+
with Image.open(image_path) as img:
|
| 184 |
+
# Extract text information
|
| 185 |
+
text_info = self.preprocessor.extract_text_regions(img)
|
| 186 |
+
|
| 187 |
+
# Analyze card condition
|
| 188 |
+
condition_info = self.preprocessor.analyze_card_condition(img)
|
| 189 |
+
|
| 190 |
+
# Get orientation
|
| 191 |
+
orientation = self.preprocessor.detect_orientation(img)
|
| 192 |
+
|
| 193 |
+
return {
|
| 194 |
+
'text_info': text_info,
|
| 195 |
+
'condition_info': condition_info,
|
| 196 |
+
'orientation': orientation
|
| 197 |
+
}
|
| 198 |
+
except Exception as e:
|
| 199 |
+
logger.error(f"Error processing image {image_path}: {str(e)}")
|
| 200 |
+
return None
|
| 201 |
+
|
| 202 |
+
def generate_filename(self, info):
|
| 203 |
+
"""Generate filename based on extracted information"""
|
| 204 |
+
year = info['text_info'].get('year', 'unknown_year')
|
| 205 |
+
brand = info['text_info'].get('brand', 'unknown_brand')
|
| 206 |
+
number = info['text_info'].get('card_number', '').replace('#', '').replace('/', '_')
|
| 207 |
+
|
| 208 |
+
if not number:
|
| 209 |
+
number = 'unknown_number'
|
| 210 |
+
|
| 211 |
+
return f"sports_card_{year}_{brand}_{number}"
|
| 212 |
+
|
| 213 |
+
def download_and_rename_files(self, drive_folder_id):
|
| 214 |
+
"""Download files from Google Drive and process them"""
|
| 215 |
if not self.drive:
|
| 216 |
return False, "Google Drive not authenticated", []
|
| 217 |
|
|
|
|
| 221 |
file_list = self.drive.ListFile({'q': query}).GetList()
|
| 222 |
|
| 223 |
if not file_list:
|
|
|
|
| 224 |
file = self.drive.CreateFile({'id': drive_folder_id})
|
| 225 |
if file:
|
| 226 |
file_list = [file]
|
| 227 |
else:
|
| 228 |
return False, "No files found with the specified ID", []
|
| 229 |
|
| 230 |
+
processed_files = []
|
| 231 |
+
for i, file in enumerate(tqdm(file_list, desc="Processing files")):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
if file['mimeType'].startswith('image/'):
|
| 233 |
+
temp_path = os.path.join(self.local_images_dir, f"temp_{i}.jpg")
|
|
|
|
| 234 |
|
| 235 |
# Download file
|
| 236 |
+
file.GetContentFile(temp_path)
|
| 237 |
|
| 238 |
+
# Process image
|
| 239 |
+
info = self.process_image(temp_path)
|
| 240 |
+
if info:
|
| 241 |
+
# Generate filename based on extracted info
|
| 242 |
+
base_filename = self.generate_filename(info)
|
| 243 |
+
new_filename = f"{base_filename}.jpg"
|
| 244 |
+
final_path = os.path.join(self.local_images_dir, new_filename)
|
| 245 |
+
|
| 246 |
+
# Rename file
|
| 247 |
+
os.rename(temp_path, final_path)
|
| 248 |
+
|
| 249 |
+
processed_files.append({
|
| 250 |
+
'file_path': final_path,
|
| 251 |
'original_name': file['title'],
|
| 252 |
'new_name': new_filename,
|
| 253 |
+
'image': final_path,
|
| 254 |
+
'extracted_info': info['text_info'],
|
| 255 |
+
'condition': info['condition_info'],
|
| 256 |
+
'orientation': info['orientation']
|
| 257 |
})
|
| 258 |
+
else:
|
| 259 |
+
os.remove(temp_path)
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
return True, f"Successfully processed {len(processed_files)} images", processed_files
|
| 262 |
except Exception as e:
|
| 263 |
+
return False, f"Error processing files: {str(e)}", []
|
| 264 |
|
| 265 |
+
def update_huggingface_dataset(self, processed_files):
|
| 266 |
+
"""Update the sports-cards dataset with processed images"""
|
| 267 |
try:
|
| 268 |
# Create a DataFrame with the file information
|
| 269 |
+
df = pd.DataFrame(processed_files)
|
| 270 |
|
| 271 |
# Create a Hugging Face Dataset from the new files
|
| 272 |
new_dataset = Dataset.from_pandas(df)
|
|
|
|
| 283 |
# Push to Hugging Face Hub
|
| 284 |
new_dataset.push_to_hub(self.dataset_name, split="train")
|
| 285 |
|
| 286 |
+
return True, f"Successfully updated dataset '{self.dataset_name}' with {len(processed_files)} processed images"
|
| 287 |
except Exception as e:
|
| 288 |
return False, f"Error updating Hugging Face dataset: {str(e)}"
|
| 289 |
|
| 290 |
+
def process_pipeline(folder_id):
|
| 291 |
"""Main pipeline to process images and update dataset"""
|
| 292 |
manager = DatasetManager()
|
| 293 |
|
|
|
|
| 296 |
if not auth_success:
|
| 297 |
return auth_message
|
| 298 |
|
| 299 |
+
# Step 2: Download and process files
|
| 300 |
+
success, message, processed_files = manager.download_and_rename_files(folder_id)
|
| 301 |
if not success:
|
| 302 |
return message
|
| 303 |
|
| 304 |
# Step 3: Update Hugging Face dataset
|
| 305 |
+
success, hf_message = manager.update_huggingface_dataset(processed_files)
|
| 306 |
+
|
| 307 |
+
# Create detailed report
|
| 308 |
+
report = f"{message}\n{hf_message}\n\nDetailed Processing Report:\n"
|
| 309 |
+
for file in processed_files:
|
| 310 |
+
report += f"\nFile: {file['new_name']}\n"
|
| 311 |
+
report += f"Extracted Info: {file['extracted_info']}\n"
|
| 312 |
+
report += f"Condition Score: {file['condition']['overall_condition']:.2f}\n"
|
| 313 |
+
report += f"Orientation: {file['orientation']}\n"
|
| 314 |
+
report += "-" * 50
|
| 315 |
+
|
| 316 |
+
return report
|
| 317 |
|
| 318 |
# Gradio interface
|
| 319 |
demo = gr.Interface(
|
|
|
|
| 322 |
gr.Textbox(
|
| 323 |
label="Google Drive File/Folder ID",
|
| 324 |
placeholder="Enter the ID from your Google Drive URL",
|
| 325 |
+
value="151VOxPO91mg0C3ORiioGUd4hogzP1ujm"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
)
|
| 327 |
],
|
| 328 |
+
outputs=gr.Textbox(label="Processing Report"),
|
| 329 |
+
title="AI-Powered Sports Cards Processor",
|
| 330 |
+
description="Upload card images to automatically extract information, analyze condition, and add to dataset"
|
| 331 |
)
|
| 332 |
|
| 333 |
if __name__ == "__main__":
|