Spaces:
Running
on
A100
Running
on
A100
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,22 +4,21 @@ import gradio as gr
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
import spaces
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
# Environment
|
| 10 |
-
# --------------------------
|
| 11 |
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
|
| 12 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 13 |
-
|
| 14 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
-
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 16 |
-
|
| 17 |
TEMP = 0.1
|
| 18 |
MAX_NEW_TOKENS = 2000
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
SYSTEM_PROMPT = (
|
| 24 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
| 25 |
"You will be given instructions on the output format, what to caption, and how to perform your job. "
|
|
@@ -56,77 +55,105 @@ Rules:
|
|
| 56 |
- Output **only the JSON**, no extra text or explanation.
|
| 57 |
"""
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
# Processor (has vision + tokenizer routing)
|
| 76 |
try:
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 79 |
)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
# Model
|
| 86 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 87 |
-
MODEL_ID,
|
| 88 |
-
token=HF_TOKEN,
|
| 89 |
-
device_map="auto",
|
| 90 |
-
torch_dtype=DTYPE,
|
| 91 |
-
trust_remote_code=True,
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
# Tokenizer (fall back in case processor doesn't expose it)
|
| 95 |
-
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
| 96 |
-
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
except Exception as e:
|
| 100 |
-
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
|
| 101 |
-
|
| 102 |
-
# --------------------------
|
| 103 |
-
# Inference
|
| 104 |
-
# --------------------------
|
| 105 |
-
def _build_messages(image: Image.Image):
|
| 106 |
-
return [
|
| 107 |
-
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
| 108 |
-
{"role": "user", "content": [{"type": "image", "image": image},
|
| 109 |
-
{"type": "text", "text": USER_PROMPT}]}
|
| 110 |
-
]
|
| 111 |
-
|
| 112 |
-
def _run(image: Image.Image) -> Tuple[str, Dict[str, Any], bool]:
|
| 113 |
if image is None:
|
| 114 |
return "Please upload an image.", None, False
|
| 115 |
-
if model is None or processor is None:
|
| 116 |
-
msg = (
|
| 117 |
-
"❌ Model failed to load.\n\n"
|
| 118 |
-
f"{LOAD_ERROR or 'Unknown error.'}\n"
|
| 119 |
-
"Check: MODEL_ID, HF_TOKEN, and that the repo includes processor + model shards."
|
| 120 |
-
)
|
| 121 |
-
return msg, None, False
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
if hasattr(
|
| 125 |
-
prompt =
|
| 126 |
-
_build_messages(image), add_generation_prompt=True, tokenize=False
|
| 127 |
-
)
|
| 128 |
else:
|
| 129 |
-
# Conservative fallback
|
| 130 |
msgs = _build_messages(image)
|
| 131 |
prompt = ""
|
| 132 |
for m in msgs:
|
|
@@ -137,93 +164,49 @@ def _run(image: Image.Image) -> Tuple[str, Dict[str, Any], bool]:
|
|
| 137 |
elif chunk["type"] == "image":
|
| 138 |
prompt += f"{role}: [IMAGE]\n"
|
| 139 |
|
| 140 |
-
|
| 141 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
| 142 |
|
| 143 |
-
# Generation args
|
| 144 |
gen_kwargs = dict(
|
| 145 |
temperature=TEMP,
|
| 146 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 147 |
)
|
| 148 |
-
#
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
from transformers.utils import is_torch_available
|
| 153 |
-
cfg_eos = getattr(model.config, "eos_token_id", None)
|
| 154 |
-
if isinstance(cfg_eos, (list, tuple)):
|
| 155 |
-
gen_kwargs["eos_token_id"] = list(cfg_eos)
|
| 156 |
-
elif eos_id is not None:
|
| 157 |
-
gen_kwargs["eos_token_id"] = eos_id
|
| 158 |
-
except Exception:
|
| 159 |
-
if eos_id is not None:
|
| 160 |
-
gen_kwargs["eos_token_id"] = eos_id
|
| 161 |
|
| 162 |
-
#
|
| 163 |
try:
|
| 164 |
gen_kwargs["response_format"] = {"type": "json_object"}
|
| 165 |
except Exception:
|
| 166 |
pass
|
| 167 |
|
| 168 |
with torch.inference_mode():
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
else:
|
| 175 |
-
text = tokenizer.decode(out_ids[0], skip_special_tokens=True)
|
| 176 |
|
| 177 |
-
# Trim any echoed prompt
|
| 178 |
if USER_PROMPT in text:
|
| 179 |
text = text.split(USER_PROMPT)[-1].strip()
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
parsed = json.loads(text)
|
| 184 |
return json.dumps(parsed, indent=2), parsed, True
|
| 185 |
-
|
| 186 |
-
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
|
| 187 |
-
if m:
|
| 188 |
-
try:
|
| 189 |
-
parsed = json.loads(m.group(0))
|
| 190 |
-
return json.dumps(parsed, indent=2), parsed, True
|
| 191 |
-
except Exception:
|
| 192 |
-
pass
|
| 193 |
-
# Return raw text to help debug prompt adherence if needed
|
| 194 |
-
return text, None, False
|
| 195 |
-
|
| 196 |
-
# --------------------------
|
| 197 |
-
# Spaces GPU entry + warmup
|
| 198 |
-
# --------------------------
|
| 199 |
-
@spaces.GPU
|
| 200 |
-
def annotate_image(pil: Image.Image):
|
| 201 |
-
return _run(pil)
|
| 202 |
|
|
|
|
| 203 |
@spaces.GPU(duration=60)
|
| 204 |
def _warmup():
|
| 205 |
-
if model is None or processor is None:
|
| 206 |
-
return "skip"
|
| 207 |
try:
|
| 208 |
-
|
| 209 |
-
_ = _run(dummy)
|
| 210 |
-
return "ok"
|
| 211 |
except Exception as e:
|
| 212 |
return f"warmup error: {e}"
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
pass
|
| 218 |
-
|
| 219 |
-
# --------------------------
|
| 220 |
-
# UI
|
| 221 |
-
# --------------------------
|
| 222 |
-
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 VLM)") as demo:
|
| 223 |
-
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT)\nUpload an image to get **strict JSON** annotations.")
|
| 224 |
-
if LOAD_ERROR:
|
| 225 |
-
with gr.Accordion("Startup Error Details", open=False):
|
| 226 |
-
gr.Markdown(f"```\n{LOAD_ERROR}\n```")
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
with gr.Column(scale=1):
|
|
@@ -234,10 +217,12 @@ with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe
|
|
| 234 |
out_json = gr.JSON(label="Parsed JSON")
|
| 235 |
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
|
| 236 |
|
| 237 |
-
def on_click(img):
|
| 238 |
-
text, js, ok = _run(img)
|
| 239 |
-
return text, js, ok
|
| 240 |
-
|
| 241 |
btn.click(annotate_image, inputs=[image], outputs=[out_text, out_json, ok_flag])
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
demo.queue(max_size=32).launch()
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import torch
|
| 6 |
import spaces
|
| 7 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
| 8 |
|
| 9 |
+
# --------- ENV / PARAMS ----------
|
|
|
|
|
|
|
| 10 |
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
|
| 11 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # put this in Space -> Settings -> Variables & secrets
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
TEMP = 0.1
|
| 13 |
MAX_NEW_TOKENS = 2000
|
| 14 |
|
| 15 |
+
# Lazy globals (ZeroGPU-safe)
|
| 16 |
+
_processor: Any = None
|
| 17 |
+
_tokenizer: Any = None
|
| 18 |
+
_model: Any = None
|
| 19 |
+
_last_load_error: str | None = None
|
| 20 |
+
|
| 21 |
+
# --------- PROMPTS (yours) ----------
|
| 22 |
SYSTEM_PROMPT = (
|
| 23 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
| 24 |
"You will be given instructions on the output format, what to caption, and how to perform your job. "
|
|
|
|
| 55 |
- Output **only the JSON**, no extra text or explanation.
|
| 56 |
"""
|
| 57 |
|
| 58 |
+
# --------- HELPERS ----------
|
| 59 |
+
def _json_extract(text: str):
|
| 60 |
+
"""Strict parse -> top-level {...} fallback."""
|
| 61 |
+
try:
|
| 62 |
+
return json.loads(text)
|
| 63 |
+
except Exception:
|
| 64 |
+
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
|
| 65 |
+
if m:
|
| 66 |
+
try:
|
| 67 |
+
return json.loads(m.group(0))
|
| 68 |
+
except Exception:
|
| 69 |
+
pass
|
| 70 |
+
return None
|
| 71 |
|
| 72 |
+
def _build_messages(image: Image.Image):
|
| 73 |
+
return [
|
| 74 |
+
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
| 75 |
+
{"role": "user", "content": [{"type": "image", "image": image},
|
| 76 |
+
{"type": "text", "text": USER_PROMPT}]}
|
| 77 |
+
]
|
| 78 |
|
| 79 |
+
# --------- ZERO-GPU LAZY LOADER ----------
|
| 80 |
+
@spaces.GPU
|
| 81 |
+
def _ensure_loaded() -> str:
|
| 82 |
+
"""
|
| 83 |
+
Load the model only when a ZeroGPU worker with a GPU is attached.
|
| 84 |
+
Tries quantized path first (compressed-tensors), then falls back to unquantized.
|
| 85 |
+
"""
|
| 86 |
+
global _processor, _tokenizer, _model, _last_load_error
|
| 87 |
+
if _model is not None and _processor is not None:
|
| 88 |
+
return "already_loaded"
|
| 89 |
|
|
|
|
| 90 |
try:
|
| 91 |
+
# Sanity: config should be gemma3 causal VLM (not CLIP)
|
| 92 |
+
cfg = AutoConfig.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
|
| 93 |
+
if "clip" in cfg.__class__.__name__.lower():
|
| 94 |
+
raise RuntimeError(
|
| 95 |
+
f"MODEL_ID '{MODEL_ID}' resolves to CLIP/encoder config; need a causal VLM checkpoint."
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Try quantized (as per your config)
|
| 99 |
+
_processor = AutoProcessor.from_pretrained(
|
| 100 |
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 101 |
)
|
| 102 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
+
MODEL_ID,
|
| 104 |
+
token=HF_TOKEN,
|
| 105 |
+
device_map="auto",
|
| 106 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 107 |
+
trust_remote_code=True,
|
| 108 |
)
|
| 109 |
+
_tokenizer = getattr(_processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
| 110 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 111 |
+
)
|
| 112 |
+
_last_load_error = None
|
| 113 |
+
return "ok_quant"
|
| 114 |
+
except Exception as e:
|
| 115 |
+
# Fallback: disable quantization (more VRAM)
|
| 116 |
+
if "compressed_tensors" in str(e):
|
| 117 |
+
try:
|
| 118 |
+
_processor = AutoProcessor.from_pretrained(
|
| 119 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 120 |
+
)
|
| 121 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 122 |
+
MODEL_ID,
|
| 123 |
+
token=HF_TOKEN,
|
| 124 |
+
device_map="auto",
|
| 125 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 126 |
+
trust_remote_code=True,
|
| 127 |
+
quantization_config=None, # force dequantized load
|
| 128 |
+
)
|
| 129 |
+
_tokenizer = getattr(_processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
| 130 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
| 131 |
+
)
|
| 132 |
+
_last_load_error = None
|
| 133 |
+
return "ok_dequant"
|
| 134 |
+
except Exception as e2:
|
| 135 |
+
_last_load_error = f"{e}\n\nFallback failed:\n{e2}\n{traceback.format_exc()}"
|
| 136 |
+
_processor = _tokenizer = _model = None
|
| 137 |
+
return "fail"
|
| 138 |
+
else:
|
| 139 |
+
_last_load_error = f"{e}\n{traceback.format_exc()}"
|
| 140 |
+
_processor = _tokenizer = _model = None
|
| 141 |
+
return "fail"
|
| 142 |
+
|
| 143 |
+
# --------- INFERENCE ----------
|
| 144 |
+
@spaces.GPU
|
| 145 |
+
def annotate_image(image: Image.Image) -> Tuple[str, Dict[str, Any] | None, bool]:
|
| 146 |
+
status = _ensure_loaded()
|
| 147 |
+
if status == "fail":
|
| 148 |
+
return f"❌ Load error:\n{_last_load_error}", None, False
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
if image is None:
|
| 151 |
return "Please upload an image.", None, False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
# Prompt assembly
|
| 154 |
+
if hasattr(_processor, "apply_chat_template"):
|
| 155 |
+
prompt = _processor.apply_chat_template(_build_messages(image), add_generation_prompt=True, tokenize=False)
|
|
|
|
|
|
|
| 156 |
else:
|
|
|
|
| 157 |
msgs = _build_messages(image)
|
| 158 |
prompt = ""
|
| 159 |
for m in msgs:
|
|
|
|
| 164 |
elif chunk["type"] == "image":
|
| 165 |
prompt += f"{role}: [IMAGE]\n"
|
| 166 |
|
| 167 |
+
inputs = _processor(text=prompt, images=image, return_tensors="pt").to(_model.device)
|
|
|
|
| 168 |
|
|
|
|
| 169 |
gen_kwargs = dict(
|
| 170 |
temperature=TEMP,
|
| 171 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 172 |
)
|
| 173 |
+
# respect multiple eos ids if present
|
| 174 |
+
eos = getattr(_model.config, "eos_token_id", None)
|
| 175 |
+
if eos is not None:
|
| 176 |
+
gen_kwargs["eos_token_id"] = eos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
# Try JSON-only output (if supported)
|
| 179 |
try:
|
| 180 |
gen_kwargs["response_format"] = {"type": "json_object"}
|
| 181 |
except Exception:
|
| 182 |
pass
|
| 183 |
|
| 184 |
with torch.inference_mode():
|
| 185 |
+
out = _model.generate(**inputs, **gen_kwargs)
|
| 186 |
|
| 187 |
+
text = (_processor.decode(out[0], skip_special_tokens=True)
|
| 188 |
+
if hasattr(_processor, "decode")
|
| 189 |
+
else _tokenizer.decode(out[0], skip_special_tokens=True))
|
|
|
|
|
|
|
| 190 |
|
|
|
|
| 191 |
if USER_PROMPT in text:
|
| 192 |
text = text.split(USER_PROMPT)[-1].strip()
|
| 193 |
|
| 194 |
+
parsed = _json_extract(text)
|
| 195 |
+
if isinstance(parsed, dict):
|
|
|
|
| 196 |
return json.dumps(parsed, indent=2), parsed, True
|
| 197 |
+
return text, None, False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
# Optional: quick warmup to validate loading on first worker
|
| 200 |
@spaces.GPU(duration=60)
|
| 201 |
def _warmup():
|
|
|
|
|
|
|
| 202 |
try:
|
| 203 |
+
return _ensure_loaded()
|
|
|
|
|
|
|
| 204 |
except Exception as e:
|
| 205 |
return f"warmup error: {e}"
|
| 206 |
|
| 207 |
+
# --------- UI ----------
|
| 208 |
+
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (ZeroGPU)") as demo:
|
| 209 |
+
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT · ZeroGPU)\nUpload an image to get **strict JSON** annotations.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
with gr.Row():
|
| 212 |
with gr.Column(scale=1):
|
|
|
|
| 217 |
out_json = gr.JSON(label="Parsed JSON")
|
| 218 |
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
btn.click(annotate_image, inputs=[image], outputs=[out_text, out_json, ok_flag])
|
| 221 |
|
| 222 |
+
# fire a non-blocking warmup
|
| 223 |
+
try:
|
| 224 |
+
_ = _warmup()
|
| 225 |
+
except Exception:
|
| 226 |
+
pass
|
| 227 |
+
|
| 228 |
demo.queue(max_size=32).launch()
|