File size: 52,354 Bytes
6bcbd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 |
"""
2025.11.3
2025.11.2
4.57.1
0.24.0
__UNSLOTH_VERSIONING__
"""
# Unsloth auto generated code
# Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.gkd_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DataCollator, DataCollatorForChatML, Dataset, EvalPrediction, F, FeatureExtractionMixin, GKDConfig, GKDTrainer, GenerationConfig, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTTrainer, TrainerCallback, Union, disable_dropout_in_model, empty_cache, nn, os, prepare_deepspeed, random, textwrap, torch, unwrap_model_for_generation, warnings)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
import inspect
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
from transformers.training_args import ParallelMode
# Wrap trainer with padding to right and enable training mode
import functools
from types import MethodType
def prepare_for_training_mode(f):
@functools.wraps(f)
def wrapper(self, *args, **kwargs):
# Enable training mode
if hasattr(self, 'model') and hasattr(self.model, "for_training"):
self.model.for_training()
output = f(self, *args, **kwargs)
# Return inference mode
if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
self.model.for_inference()
return output
return wrapper
pass
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def chunked_selective_log_softmax(logits, index):
# Split into 4 chunks only
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
all_per_token_logps = []
# Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
chunk_logits = chunk_logits.to(torch.float32)
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values
all_per_token_logps.append(per_token_logps)
pass
all_per_token_logps = torch.concat(all_per_token_logps)
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
return all_per_token_logps
def calculate_pad_tokens_in_prompt(
input_ids: torch.Tensor,
logits_to_keep: int,
pad_token_id: int
) -> torch.Tensor:
"""
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens
"""
if logits_to_keep >= input_ids.shape[1]:
raise ValueError("logits_to_keep must be smaller than the sequence length.")
prompt_section = input_ids[:, :-logits_to_keep]
padding_mask = (prompt_section == pad_token_id)
pad_token_counts = padding_mask.sum(dim=1)
return pad_token_counts
def create_completion_attention_mask(
completion_input_ids: torch.Tensor,
left_pad_tokens_per_prompt: torch.Tensor,
max_left_pad: int,
pad_token_id: int
) -> torch.Tensor:
"""
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
and pad are pad tokens, this function would make a completion mask that would 0 out the pad
and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
"""
batch_size, completion_len = completion_input_ids.shape
device = completion_input_ids.device
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt
indices = torch.arange(completion_len, device=device).unsqueeze(0)
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)
non_padding_mask = (completion_input_ids != pad_token_id)
final_mask = shift_mask & non_padding_mask
return final_mask
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
"""
Moves all padding tokens in each sequence of a batch to the right.
"""
mask = (tensor != pad_id)
# Must do stable=True since binary mark is unordered
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
packed_tensor = torch.gather(tensor, 1, sorted_indices)
return packed_tensor
def align_logprobs_with_mask(
logprob_tensor: torch.Tensor,
attention_mask: torch.Tensor,
pad_value: float = 0.0
) -> torch.Tensor:
"""
Aligns a log probability tensor with a given attention mask.
"""
device = logprob_tensor.device
batch_size, logprob_seq_len = logprob_tensor.shape
mask_seq_len = attention_mask.shape[1]
padded_logprobs = torch.full(
attention_mask.shape,
fill_value=pad_value,
dtype=logprob_tensor.dtype,
device=device
)
left_pad_counts = torch.argmax(attention_mask, dim=1)
cols = torch.arange(logprob_seq_len, device=device)
dest_indices = left_pad_counts.unsqueeze(1) + cols
# Create destination row indices
# Shape: [batch_size, logprob_seq_len]
row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)
# --- 4. Filter out-of-bounds indices and perform assignment ---
# Create a mask to identify only the indices that are within the bounds
# of the target tensor's sequence length.
valid_mask = dest_indices < mask_seq_len
# Use this mask to select only the valid row indices, column indices,
# and the corresponding values from the logprob tensor.
# This flattens the selected elements into 1D tensors.
valid_rows = row_indices[valid_mask]
valid_cols = dest_indices[valid_mask]
valid_vals = logprob_tensor[valid_mask]
# Place the valid values into their correct positions in the padded tensor
# using a single, efficient advanced indexing operation.
padded_logprobs[valid_rows, valid_cols] = valid_vals
return padded_logprobs
@dataclass
class UnslothGKDConfig(GKDConfig):
"""
Configuration class for [`GKDTrainer`].
This class includes only the parameters that are specific to GKD training. For a full list of training arguments,
please refer to the [`~transformers.TrainingArguments`] and [`SFTConfig`] documentation.
Args:
temperature (`float`, *optional*, defaults to `0.9`):
Temperature for sampling. The higher the temperature, the more random the completions.
lmbda (`float`, *optional*, defaults to `0.5`):
Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy
student-generated outputs).
beta (`float`, *optional*, defaults to `0.5`):
Interpolation coefficient between `0.0` and `1.0` of the Generalized Jensen-Shannon Divergence loss. When
beta is `0.0`, the loss is the KL divergence. When beta is `1.0`, the loss is the Inverse KL Divergence.
max_new_tokens (`int`, *optional*, defaults to `128`):
Maximum number of tokens to generate per completion.
teacher_model_name_or_path (`str`, *optional*):
Model name or path of the teacher model. If `None`, the teacher model will be the same as the model being
trained.
teacher_model_init_kwargs (`dict[str, Any]]`, *optional*):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the teacher model
from a string.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model.
seq_kd (`bool`, *optional*, defaults to `False`):
Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT on
teacher-generated output).
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
max_seq_length : Optional[int] = field(
default = None,
metadata = {'help': 'Maximum sequence length to truncate to.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = True,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = None,
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
parallelism_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
project = 'huggingface',
trackio_space_id = 'trackio',
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
hub_revision = None,
gradient_checkpointing = True,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
liger_kernel_config = None,
eval_use_gather_object = False,
average_tokens_across_devices = True,
model_init_kwargs = None,
chat_template_path = None,
dataset_text_field = 'text',
dataset_kwargs = None,
dataset_num_proc = None,
eos_token = None,
pad_token = None,
max_length = 1024,
packing = False,
packing_strategy = 'bfd',
padding_free = False,
pad_to_multiple_of = None,
eval_packing = None,
completion_only_loss = None,
assistant_only_loss = False,
loss_type = 'nll',
activation_offloading = False,
temperature = 0.9,
lmbda = 0.5,
beta = 0.5,
max_new_tokens = 128,
teacher_model_name_or_path = None,
teacher_model_init_kwargs = None,
disable_dropout = True,
seq_kd = False,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
max_seq_length = None,
**kwargs,
):
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
if dataset_num_proc is None:
from multiprocessing import cpu_count
dataset_num_proc = min(max(cpu_count()+4, 2), 64)
if os.environ.get('UNSLOTH_ENABLE_FLEX_ATTENTION', '0') == '1':
from unsloth_zoo.flex_attention import HAS_FLEX_ATTENTION
if HAS_FLEX_ATTENTION and pad_to_multiple_of is None:
from unsloth_zoo.flex_attention import FLEX_ATTENTION_BLOCK_SIZE
pad_to_multiple_of = FLEX_ATTENTION_BLOCK_SIZE
if temperature <= 0:
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
elif temperature >= 10:
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
parallelism_config = parallelism_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
project = project,
trackio_space_id = trackio_space_id,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
hub_revision = hub_revision,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
liger_kernel_config = liger_kernel_config,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
model_init_kwargs = model_init_kwargs,
chat_template_path = chat_template_path,
dataset_text_field = dataset_text_field,
dataset_kwargs = dataset_kwargs,
dataset_num_proc = dataset_num_proc,
eos_token = eos_token,
pad_token = pad_token,
max_length = max_length,
packing = packing,
packing_strategy = packing_strategy,
padding_free = padding_free,
pad_to_multiple_of = pad_to_multiple_of,
eval_packing = eval_packing,
completion_only_loss = completion_only_loss,
assistant_only_loss = assistant_only_loss,
loss_type = loss_type,
activation_offloading = activation_offloading,
temperature = temperature,
lmbda = lmbda,
beta = beta,
max_new_tokens = max_new_tokens,
teacher_model_name_or_path = teacher_model_name_or_path,
teacher_model_init_kwargs = teacher_model_init_kwargs,
disable_dropout = disable_dropout,
seq_kd = seq_kd,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
self.max_seq_length = max_seq_length
pass
class _UnslothGKDTrainer(SFTTrainer):
""""""
_tag_names = ["trl", "gkd"]
_name = "GKD"
_paper = {
"title": "On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes",
"id": "2306.13649",
# docstyle-ignore
"citation": textwrap.dedent("""\
@inproceedings{agarwal2024on-policy,
title = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}},
author = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem},
year = 2024,
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
publisher = {OpenReview.net},
url = {https://openreview.net/forum?id=3zKtaqxLhW},
}"""),
}
def __init__(
self,
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
teacher_model: Union[PreTrainedModel, nn.Module, str] = None,
args: Optional[GKDConfig] = None,
data_collator: Optional[DataCollator] = None, # type: ignore
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
peft_config: Optional["PeftConfig"] = None,
formatting_func: Optional[Callable] = None,
):
if not os.environ.get("TRL_EXPERIMENTAL_SILENCE"):
warnings.warn(
"This trainer will soon be moved to trl.experimental and is a candidate for removal. If you rely on "
"it and want it to remain, please share your comments here: "
"https://github.com/huggingface/trl/issues/4223. Silence this warning by setting environment variable "
"TRL_EXPERIMENTAL_SILENCE=1."
)
# Ensure Trainer does not drop non-signature columns used by the collator [e.g., "prompts"]
args.remove_unused_columns = False
# Respect a user-provided data_collator; otherwise, provide a ChatML collator that
if data_collator is None:
data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_length)
# Ensure SFTTrainer does not pre-process the dataset when using a ChatML collator,
# so that raw conversational fields [e.g., "messages"] remain available to the collator.
if args.dataset_kwargs is None:
args.dataset_kwargs = {"skip_prepare_dataset": True}
else:
args.dataset_kwargs["skip_prepare_dataset"] = True
# Liger fused GKD loss [JSD]
self.use_liger_gkd_loss = False
if args.use_liger_kernel:
self.liger_jsd_loss = LigerFusedLinearJSDLoss(
beta=args.beta,
ignore_index=-100,
temperature=args.temperature,
compiled=False,
)
self.use_liger_gkd_loss = True
super().__init__(
model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
peft_config=peft_config,
formatting_func=formatting_func,
)
if args.teacher_model_init_kwargs is None:
teacher_model_init_kwargs = {}
elif not isinstance(teacher_model, str):
raise ValueError(
"You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated."
)
else:
teacher_model_init_kwargs = args.teacher_model_init_kwargs
teacher_model_init_kwargs["dtype"] = (
teacher_model_init_kwargs["dtype"]
if teacher_model_init_kwargs["dtype"] in ["auto", None]
else getattr(torch, teacher_model_init_kwargs["dtype"])
)
if isinstance(teacher_model, str):
teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)
# Disable dropout in the model
if args.disable_dropout:
disable_dropout_in_model(self.model)
if self.is_deepspeed_enabled:
self.teacher_model = prepare_deepspeed(teacher_model, self.accelerator)
else:
self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True)
self.lmbda = args.lmbda
self.beta = args.beta
self.temperature = args.temperature
self.seq_kd = args.seq_kd
self.generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
do_sample=True,
top_k=0,
use_cache=False if args.gradient_checkpointing else True,
pad_token_id=self.processing_class.pad_token_id,
)
# Set custom EOS tokens if they are specified by the model's generation
# config. This is important for models with the Llama 3 chat template,
# which use special tokens <|eot_id|> and <|eom_id|> to mark the end of
# turns or messages.
if (
hasattr(self.model.generation_config, "eos_token_id")
and self.model.generation_config.eos_token_id is not None
):
self.generation_config.eos_token_id = self.model.generation_config.eos_token_id
@staticmethod
def generalized_jsd_loss(
student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean"
):
"""
Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1)
of https://huggingface.co/papers/2306.13649 for the definition.
Args:
student_logits:
Tensor of shape (batch_size, sequence_length, vocab_size)
teacher_logits:
Tensor of shape (batch_size, sequence_length, vocab_size)
labels:
Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing
loss
beta:
Interpolation coefficient between 0 and 1 (default: 0.5)
temperature:
Softmax temperature (default: 1.0)
reduction:
Specifies the reduction to apply to the output (default: 'batchmean')
Returns:
loss: Scalar tensor with the generalized JSD loss
"""
# Apply temperature scaling
student_logits = student_logits / temperature
teacher_logits = teacher_logits / temperature
# Compute log probabilities for student and probabilities for teacher
student_log_probs = F.log_softmax(student_logits, dim=-1)
teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
if beta == 0:
jsd = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True)
elif beta == 1:
jsd = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True)
else:
# Compute the log of the mixture distribution
# log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture
beta = torch.tensor(beta, dtype=student_log_probs.dtype)
mixture_log_probs = torch.logsumexp(
torch.stack([student_log_probs + torch.log(1 - beta), teacher_log_probs + torch.log(beta)]),
dim=0,
)
# Compute KL divergences using F.kl_div
# PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper.
kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True)
kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True)
# Compute the Generalized Jensen-Shannon Divergence
jsd = beta * kl_teacher + (1 - beta) * kl_student
# Masking
if labels is not None:
mask = labels != -100
jsd = jsd[mask]
# Apply reduction
if reduction == "batchmean":
return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / jsd.size(0)
elif reduction == "sum":
return jsd.sum()
elif reduction == "mean":
return jsd.mean()
else:
return jsd
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
if self.use_liger_gkd_loss:
# Forward only through the base models (avoid lm_head to save memory)
unwrapped_student = self.accelerator.unwrap_model(model)
if hasattr(unwrapped_student, "get_decoder") and unwrapped_student.get_decoder() is not None:
base_student = unwrapped_student.get_decoder()
else:
base_student = getattr(
unwrapped_student, getattr(unwrapped_student, "base_model_prefix", "model"), unwrapped_student
)
student_outputs = base_student(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
output_hidden_states=True,
use_cache=False,
)
self.teacher_model.eval()
unwrapped_teacher = self.accelerator.unwrap_model(self.teacher_model)
if hasattr(unwrapped_teacher, "get_decoder") and unwrapped_teacher.get_decoder() is not None:
base_teacher = unwrapped_teacher.get_decoder()
else:
base_teacher = getattr(
unwrapped_teacher, getattr(unwrapped_teacher, "base_model_prefix", "model"), unwrapped_teacher
)
with torch.no_grad():
teacher_outputs = base_teacher(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
output_hidden_states=True,
use_cache=False,
)
# hidden states (shifted)
student_hidden = student_outputs.last_hidden_state[:, :-1].contiguous()
teacher_hidden = teacher_outputs.last_hidden_state[:, :-1].contiguous()
# labels mask and labels (shifted)
labels_mask = inputs["labels"] != -100
masked_input_ids = torch.where(
labels_mask, inputs["input_ids"], torch.full_like(inputs["input_ids"], -100)
)
true_labels = masked_input_ids[:, 1:].contiguous()
# heads
student_head = unwrapped_student.get_output_embeddings()
teacher_head = unwrapped_teacher.get_output_embeddings()
# liger fused jsd loss
loss = self.liger_jsd_loss(
student_input=student_hidden,
student_weight=student_head.weight,
teacher_input=teacher_hidden,
teacher_weight=teacher_head.weight,
true_labels=true_labels,
student_bias=getattr(student_head, "bias", None),
teacher_bias=getattr(teacher_head, "bias", None),
)
else:
# compute student output
student_outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
)
# compute teacher output in eval mode
self.teacher_model.eval()
with torch.no_grad():
teacher_outputs = self.teacher_model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
)
# slice the logits for the generated tokens using the inputs["prompts"] lengths
prompt_lengths = inputs["prompts"].shape[1]
shifted_student_logits = student_outputs.logits[:, prompt_lengths - 1 : -1, :]
shifted_teacher_logits = teacher_outputs.logits[:, prompt_lengths - 1 : -1, :]
shifted_labels = inputs["labels"][:, prompt_lengths:]
# compute loss
loss = self.generalized_jsd_loss(
student_logits=shifted_student_logits,
teacher_logits=shifted_teacher_logits,
labels=shifted_labels,
beta=self.beta,
)
# empty cache
empty_cache()
# Return loss
return (loss, student_outputs) if return_outputs else loss
@staticmethod
def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None):
# Generate output with respect to the prompt-only
generated_outputs = model.generate(
input_ids=inputs["prompts"],
attention_mask=inputs.get("prompt_attention_mask", None),
generation_config=generation_config,
return_dict_in_generate=True,
)
# Get the generated token IDs
generated_tokens = generated_outputs.sequences
# Calculate new attention mask
new_attention_mask = torch.ones_like(generated_tokens)
new_labels = generated_tokens.clone()
# If there's pad_token_id, set attention mask to 0 for padding tokens
if pad_token_id is not None:
new_labels[new_labels == pad_token_id] = -100
new_attention_mask[generated_tokens == pad_token_id] = 0
return generated_tokens, new_attention_mask, new_labels
def training_step(
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
) -> torch.Tensor:
"""
Perform a training step for the Generalized Knowledge Distillation (GKD) model.
This method implements the on-policy learning approach described in the GKD paper. With probability
`self.lmbda`, it generates new responses using the student model, which are then used for training instead of
the original inputs.
"""
if self.seq_kd:
with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model:
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
)
inputs["input_ids"] = new_input_ids
inputs["attention_mask"] = new_attention_mask
inputs["labels"] = new_labels
if random.random() <= self.lmbda:
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
)
inputs["input_ids"] = new_input_ids
inputs["attention_mask"] = new_attention_mask
inputs["labels"] = new_labels
loss = super().training_step(model, inputs, num_items_in_batch)
return loss
class UnslothGKDTrainer(_UnslothGKDTrainer):
"""
Trainer for Generalized Knowledge Distillation (GKD) of language models.
For details on GKD, see the paper: [On-Policy Distillation of Language Models: Learning from Self-Generated
Mistakes](https://huggingface.co/papers/2306.13649).
Args:
model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*):
Model to be trained, or the string identifier of the model to be instantiated from a pretrained model.
teacher_model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*):
Teacher model for knowledge distillation, or the string identifier of the model to be instantiated from a
pretrained model.
args ([`GKDConfig`], *optional*):
Training arguments.
data_collator ([`~transformers.DataCollator`], *optional*):
Data collator to batch samples from the dataset. It defaults to a [`DataCollatorForChatML`] using the
`processing_class`.
train_dataset ([`~datasets.Dataset`], *optional*):
Dataset for training.
eval_dataset ([`~datasets.Dataset`] or `dict` of [`~datasets.Dataset`], *optional*):
Dataset for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Class to process the data.
compute_metrics (`Callable`, *optional*):
Function to compute metrics at evaluation. Must take in an [`~transformers.EvalPrediction`] and return a
dictionary string to float.
callbacks (`list` of [`~transformers.TrainerCallback`], *optional*):
Callbacks to use during training.
optimizers (`tuple` of `torch.optim.Optimizer` and `torch.optim.lr_scheduler.LambdaLR`, *optional*, defaults to `(None, None)`):
Tuple containing the optimizer and the learning rate scheduler to use for training.
preprocess_logits_for_metrics (`Callable`, *optional*):
Function to preprocess the logits before computing the metrics. Must take in the `logits` and `labels` and
return the logits to be used for metrics computation.
peft_config ([`~peft.PeftConfig`], *optional*):
PEFT configuration to use PEFT for training. If `None`, PEFT is not used. If provided, the `model` will be
wrapped with the specified PEFT adapter.
formatting_func (`Callable`, *optional*):
Function to format the dataset. Must take in an example and return an example.
"""
def __init__(
self,
model = None,
teacher_model = None,
args = None,
data_collator = None,
train_dataset = None,
eval_dataset = None,
processing_class = None,
compute_metrics = None,
callbacks = None,
preprocess_logits_for_metrics = None,
peft_config = None,
formatting_func = None,
**kwargs
):
if args is None: args = UnslothGKDConfig()
use_bf16 = getattr(args, 'bf16', False)
if type(use_bf16) is not bool: use_bf16 = False
use_fp16 = getattr(args, 'fp16', False)
if type(use_fp16) is not bool: use_fp16 = False
force_float32 = False
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
# Forced float32 training
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
# Mixed precision training
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
if type(fp16_full_eval) is not bool: fp16_full_eval = False
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if type(bf16_full_eval) is not bool: bf16_full_eval = False
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
if not isinstance(data_collator, UnslothVisionDataCollator):
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
data_collator = TransformersDataCollatorForLanguageModeling(
__tokenizer,
mlm = False,
mlm_probability = 0.0,
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
)
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
data_collator = DataCollatorForSeq2Seq(
__tokenizer,
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
)
else:
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
if not isinstance(data_collator, UnslothVisionDataCollator):
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
if isinstance(data_collator, DataCollatorForSeq2Seq):
data_collator = DataCollatorForSeq2Seq(
__tokenizer.tokenizer,
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
)
else:
data_collator = TransformersDataCollatorForLanguageModeling(
__tokenizer.tokenizer,
mlm = False,
mlm_probability = 0.0,
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
)
other_metrics = []
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('gkd_trainer', other_metrics)
# [TODO] Fix up DataParallel multiplying batch sizes
# [TODO] DDP works, but DP seems to not work? [TODO]
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
if getattr(args, "_n_gpu", 1) != 1:
args._n_gpu = 1
if "model" in locals() and hasattr(model, "for_training"):
model.for_training()
super().__init__(
model = model,
teacher_model = teacher_model,
args = args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
processing_class = processing_class,
compute_metrics = compute_metrics,
callbacks = callbacks,
preprocess_logits_for_metrics = preprocess_logits_for_metrics,
peft_config = peft_config,
formatting_func = formatting_func,**kwargs)
if "model" in locals() and hasattr(model, "for_inference"):
model.for_inference()
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
if hasattr(self, 'accelerator'):
scaler = self.accelerator.scaler
current_model = model
while hasattr(current_model, 'model'):
current_model.accelerator_scaler = scaler
current_model = current_model.model
current_model.accelerator_scaler = scaler
pass
if hasattr(self, 'train'):
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
pass
pass
|