File size: 52,354 Bytes
6bcbd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
"""
2025.11.3
2025.11.2
4.57.1
0.24.0
__UNSLOTH_VERSIONING__
"""

# Unsloth auto generated code
# Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.gkd_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DataCollator, DataCollatorForChatML, Dataset, EvalPrediction, F, FeatureExtractionMixin, GKDConfig, GKDTrainer, GenerationConfig, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTTrainer, TrainerCallback, Union, disable_dropout_in_model, empty_cache, nn, os, prepare_deepspeed, random, textwrap, torch, unwrap_model_for_generation, warnings)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
import inspect
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
from transformers.training_args import ParallelMode

# Wrap trainer with padding to right and enable training mode
import functools
from types import MethodType
def prepare_for_training_mode(f):
    @functools.wraps(f)
    def wrapper(self, *args, **kwargs):
        # Enable training mode
        if hasattr(self, 'model') and hasattr(self.model, "for_training"):
            self.model.for_training()
        output = f(self, *args, **kwargs)
        # Return inference mode
        if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
            self.model.for_inference()
        return output
    return wrapper
pass

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def chunked_selective_log_softmax(logits, index):
    # Split into 4 chunks only
    chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
    chunked_index  = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
    all_per_token_logps = []
    # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
    for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
        chunk_logits = chunk_logits.to(torch.float32)
        selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
        logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
        per_token_logps = selected_logits - logsumexp_values
        all_per_token_logps.append(per_token_logps)
    pass
    all_per_token_logps = torch.concat(all_per_token_logps)
    all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
    return all_per_token_logps

def calculate_pad_tokens_in_prompt(
    input_ids: torch.Tensor,
    logits_to_keep: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens 
    """
    if logits_to_keep >= input_ids.shape[1]:
        raise ValueError("logits_to_keep must be smaller than the sequence length.")

    prompt_section = input_ids[:, :-logits_to_keep]

    padding_mask = (prompt_section == pad_token_id)

    pad_token_counts = padding_mask.sum(dim=1)

    return pad_token_counts

def create_completion_attention_mask(
    completion_input_ids: torch.Tensor,
    left_pad_tokens_per_prompt: torch.Tensor,
    max_left_pad: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]

    Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
    and pad are pad tokens, this function would make a completion mask that would 0 out the pad
    and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
    """
    batch_size, completion_len = completion_input_ids.shape
    device = completion_input_ids.device

    num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt

    indices = torch.arange(completion_len, device=device).unsqueeze(0)
    shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)

    non_padding_mask = (completion_input_ids != pad_token_id)

    final_mask = shift_mask & non_padding_mask

    return final_mask

def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
    """
    Moves all padding tokens in each sequence of a batch to the right.
    """
    mask = (tensor != pad_id)
    # Must do stable=True since binary mark is unordered
    sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
    packed_tensor = torch.gather(tensor, 1, sorted_indices)
    return packed_tensor

def align_logprobs_with_mask(
    logprob_tensor: torch.Tensor,
    attention_mask: torch.Tensor,
    pad_value: float = 0.0
) -> torch.Tensor:
    """
    Aligns a log probability tensor with a given attention mask.
    """

    device = logprob_tensor.device
    batch_size, logprob_seq_len = logprob_tensor.shape
    mask_seq_len = attention_mask.shape[1]

    padded_logprobs = torch.full(
        attention_mask.shape,
        fill_value=pad_value,
        dtype=logprob_tensor.dtype,
        device=device
    )

    left_pad_counts = torch.argmax(attention_mask, dim=1)

    cols = torch.arange(logprob_seq_len, device=device)
    dest_indices = left_pad_counts.unsqueeze(1) + cols

    # Create destination row indices
    # Shape: [batch_size, logprob_seq_len]
    row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)

    # --- 4. Filter out-of-bounds indices and perform assignment ---
    # Create a mask to identify only the indices that are within the bounds
    # of the target tensor's sequence length.
    valid_mask = dest_indices < mask_seq_len

    # Use this mask to select only the valid row indices, column indices,
    # and the corresponding values from the logprob tensor.
    # This flattens the selected elements into 1D tensors.
    valid_rows = row_indices[valid_mask]
    valid_cols = dest_indices[valid_mask]
    valid_vals = logprob_tensor[valid_mask]

    # Place the valid values into their correct positions in the padded tensor
    # using a single, efficient advanced indexing operation.
    padded_logprobs[valid_rows, valid_cols] = valid_vals

    return padded_logprobs
@dataclass
class UnslothGKDConfig(GKDConfig):
    """
    
    Configuration class for [`GKDTrainer`].

    This class includes only the parameters that are specific to GKD training. For a full list of training arguments,
    please refer to the [`~transformers.TrainingArguments`] and [`SFTConfig`] documentation.

    Args:
        temperature (`float`, *optional*, defaults to `0.9`):
            Temperature for sampling. The higher the temperature, the more random the completions.
        lmbda (`float`, *optional*, defaults to `0.5`):
            Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy
            student-generated outputs).
        beta (`float`, *optional*, defaults to `0.5`):
            Interpolation coefficient between `0.0` and `1.0` of the Generalized Jensen-Shannon Divergence loss. When
            beta is `0.0`, the loss is the KL divergence. When beta is `1.0`, the loss is the Inverse KL Divergence.
        max_new_tokens (`int`, *optional*, defaults to `128`):
            Maximum number of tokens to generate per completion.
        teacher_model_name_or_path (`str`, *optional*):
            Model name or path of the teacher model. If `None`, the teacher model will be the same as the model being
            trained.
        teacher_model_init_kwargs (`dict[str, Any]]`, *optional*):
            Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the teacher model
            from a string.
        disable_dropout (`bool`, *optional*, defaults to `True`):
            Whether to disable dropout in the model.
        seq_kd (`bool`, *optional*, defaults to `False`):
            Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT on
            teacher-generated output).
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    max_seq_length : Optional[int] = field(
        default = None,
        metadata = {'help': 'Maximum sequence length to truncate to.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = None,
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        parallelism_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        project = 'huggingface',
        trackio_space_id = 'trackio',
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        hub_revision = None,
        gradient_checkpointing = True,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        liger_kernel_config = None,
        eval_use_gather_object = False,
        average_tokens_across_devices = True,
        model_init_kwargs = None,
        chat_template_path = None,
        dataset_text_field = 'text',
        dataset_kwargs = None,
        dataset_num_proc = None,
        eos_token = None,
        pad_token = None,
        max_length = 1024,
        packing = False,
        packing_strategy = 'bfd',
        padding_free = False,
        pad_to_multiple_of = None,
        eval_packing = None,
        completion_only_loss = None,
        assistant_only_loss = False,
        loss_type = 'nll',
        activation_offloading = False,
        temperature = 0.9,
        lmbda = 0.5,
        beta = 0.5,
        max_new_tokens = 128,
        teacher_model_name_or_path = None,
        teacher_model_init_kwargs = None,
        disable_dropout = True,
        seq_kd = False,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        max_seq_length = None,
        **kwargs,
    ):
        if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = min(max(cpu_count()+4, 2), 64)
        if os.environ.get('UNSLOTH_ENABLE_FLEX_ATTENTION', '0') == '1':
            from unsloth_zoo.flex_attention import HAS_FLEX_ATTENTION
            if HAS_FLEX_ATTENTION and pad_to_multiple_of is None:
                from unsloth_zoo.flex_attention import FLEX_ATTENTION_BLOCK_SIZE
                pad_to_multiple_of = FLEX_ATTENTION_BLOCK_SIZE
        
        if temperature <= 0:
            raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
        elif temperature >= 10:
            raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
        
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            parallelism_config = parallelism_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            project = project,
            trackio_space_id = trackio_space_id,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            hub_revision = hub_revision,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            liger_kernel_config = liger_kernel_config,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            model_init_kwargs = model_init_kwargs,
            chat_template_path = chat_template_path,
            dataset_text_field = dataset_text_field,
            dataset_kwargs = dataset_kwargs,
            dataset_num_proc = dataset_num_proc,
            eos_token = eos_token,
            pad_token = pad_token,
            max_length = max_length,
            packing = packing,
            packing_strategy = packing_strategy,
            padding_free = padding_free,
            pad_to_multiple_of = pad_to_multiple_of,
            eval_packing = eval_packing,
            completion_only_loss = completion_only_loss,
            assistant_only_loss = assistant_only_loss,
            loss_type = loss_type,
            activation_offloading = activation_offloading,
            temperature = temperature,
            lmbda = lmbda,
            beta = beta,
            max_new_tokens = max_new_tokens,
            teacher_model_name_or_path = teacher_model_name_or_path,
            teacher_model_init_kwargs = teacher_model_init_kwargs,
            disable_dropout = disable_dropout,
            seq_kd = seq_kd,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
        self.max_seq_length = max_seq_length
pass

class _UnslothGKDTrainer(SFTTrainer):
    """"""

    _tag_names = ["trl", "gkd"]
    _name = "GKD"
    _paper = {
        "title": "On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes",
        "id": "2306.13649",
        # docstyle-ignore
        "citation": textwrap.dedent("""\
            @inproceedings{agarwal2024on-policy,
                title        = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}},
                author       = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem},
                year         = 2024,
                booktitle    = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
                publisher    = {OpenReview.net},
                url          = {https://openreview.net/forum?id=3zKtaqxLhW},
            }"""),
    }

    def __init__(
        self,
        model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
        teacher_model: Union[PreTrainedModel, nn.Module, str] = None,
        args: Optional[GKDConfig] = None,
        data_collator: Optional[DataCollator] = None,  # type: ignore
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional["PeftConfig"] = None,
        formatting_func: Optional[Callable] = None,
    ):
        if not os.environ.get("TRL_EXPERIMENTAL_SILENCE"):
            warnings.warn(
                "This trainer will soon be moved to trl.experimental and is a candidate for removal. If you rely on "
                "it and want it to remain, please share your comments here: "
                "https://github.com/huggingface/trl/issues/4223. Silence this warning by setting environment variable "
                "TRL_EXPERIMENTAL_SILENCE=1."
            )
        # Ensure Trainer does not drop non-signature columns used by the collator [e.g., "prompts"]
        args.remove_unused_columns = False
        # Respect a user-provided data_collator; otherwise, provide a ChatML collator that
        if data_collator is None:
            data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_length)

        # Ensure SFTTrainer does not pre-process the dataset when using a ChatML collator,
        # so that raw conversational fields [e.g., "messages"] remain available to the collator.
        if args.dataset_kwargs is None:
            args.dataset_kwargs = {"skip_prepare_dataset": True}
        else:
            args.dataset_kwargs["skip_prepare_dataset"] = True

        # Liger fused GKD loss [JSD]
        self.use_liger_gkd_loss = False
        if args.use_liger_kernel:
            self.liger_jsd_loss = LigerFusedLinearJSDLoss(
                beta=args.beta,
                ignore_index=-100,
                temperature=args.temperature,
                compiled=False,
            )
            self.use_liger_gkd_loss = True

        super().__init__(
            model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
            peft_config=peft_config,
            formatting_func=formatting_func,
        )

        if args.teacher_model_init_kwargs is None:
            teacher_model_init_kwargs = {}
        elif not isinstance(teacher_model, str):
            raise ValueError(
                "You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated."
            )
        else:
            teacher_model_init_kwargs = args.teacher_model_init_kwargs
            teacher_model_init_kwargs["dtype"] = (
                teacher_model_init_kwargs["dtype"]
                if teacher_model_init_kwargs["dtype"] in ["auto", None]
                else getattr(torch, teacher_model_init_kwargs["dtype"])
            )

        if isinstance(teacher_model, str):
            teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)

        # Disable dropout in the model
        if args.disable_dropout:
            disable_dropout_in_model(self.model)

        if self.is_deepspeed_enabled:
            self.teacher_model = prepare_deepspeed(teacher_model, self.accelerator)
        else:
            self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True)

        self.lmbda = args.lmbda
        self.beta = args.beta
        self.temperature = args.temperature
        self.seq_kd = args.seq_kd

        self.generation_config = GenerationConfig(
            max_new_tokens=args.max_new_tokens,
            temperature=args.temperature,
            do_sample=True,
            top_k=0,
            use_cache=False if args.gradient_checkpointing else True,
            pad_token_id=self.processing_class.pad_token_id,
        )
        # Set custom EOS tokens if they are specified by the model's generation
        # config. This is important for models with the Llama 3 chat template,
        # which use special tokens <|eot_id|> and <|eom_id|> to mark the end of
        # turns or messages.
        if (
            hasattr(self.model.generation_config, "eos_token_id")
            and self.model.generation_config.eos_token_id is not None
        ):
            self.generation_config.eos_token_id = self.model.generation_config.eos_token_id

    @staticmethod
    def generalized_jsd_loss(
        student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean"
    ):
        """
        Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1)
        of https://huggingface.co/papers/2306.13649 for the definition.

        Args:
            student_logits:
                Tensor of shape (batch_size, sequence_length, vocab_size)
            teacher_logits:
                Tensor of shape (batch_size, sequence_length, vocab_size)
            labels:
                Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing
                loss
            beta:
                Interpolation coefficient between 0 and 1 (default: 0.5)
            temperature:
                Softmax temperature (default: 1.0)
            reduction:
                Specifies the reduction to apply to the output (default: 'batchmean')

        Returns:
            loss: Scalar tensor with the generalized JSD loss
        """

        # Apply temperature scaling
        student_logits = student_logits / temperature
        teacher_logits = teacher_logits / temperature

        # Compute log probabilities for student and probabilities for teacher
        student_log_probs = F.log_softmax(student_logits, dim=-1)
        teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)

        if beta == 0:
            jsd = F.kl_div(student_log_probs, teacher_log_probs, reduction="none", log_target=True)
        elif beta == 1:
            jsd = F.kl_div(teacher_log_probs, student_log_probs, reduction="none", log_target=True)
        else:
            # Compute the log of the mixture distribution
            # log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture
            beta = torch.tensor(beta, dtype=student_log_probs.dtype)
            mixture_log_probs = torch.logsumexp(
                torch.stack([student_log_probs + torch.log(1 - beta), teacher_log_probs + torch.log(beta)]),
                dim=0,
            )

            # Compute KL divergences using F.kl_div
            # PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper.
            kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True)
            kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True)

            # Compute the Generalized Jensen-Shannon Divergence
            jsd = beta * kl_teacher + (1 - beta) * kl_student

        # Masking
        if labels is not None:
            mask = labels != -100
            jsd = jsd[mask]

        # Apply reduction
        if reduction == "batchmean":
            return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / jsd.size(0)
        elif reduction == "sum":
            return jsd.sum()
        elif reduction == "mean":
            return jsd.mean()
        else:
            return jsd

    def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
        if self.use_liger_gkd_loss:
            # Forward only through the base models (avoid lm_head to save memory)
            unwrapped_student = self.accelerator.unwrap_model(model)
            if hasattr(unwrapped_student, "get_decoder") and unwrapped_student.get_decoder() is not None:
                base_student = unwrapped_student.get_decoder()
            else:
                base_student = getattr(
                    unwrapped_student, getattr(unwrapped_student, "base_model_prefix", "model"), unwrapped_student
                )

            student_outputs = base_student(
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                output_hidden_states=True,
                use_cache=False,
            )

            self.teacher_model.eval()
            unwrapped_teacher = self.accelerator.unwrap_model(self.teacher_model)
            if hasattr(unwrapped_teacher, "get_decoder") and unwrapped_teacher.get_decoder() is not None:
                base_teacher = unwrapped_teacher.get_decoder()
            else:
                base_teacher = getattr(
                    unwrapped_teacher, getattr(unwrapped_teacher, "base_model_prefix", "model"), unwrapped_teacher
                )
            with torch.no_grad():
                teacher_outputs = base_teacher(
                    input_ids=inputs["input_ids"],
                    attention_mask=inputs["attention_mask"],
                    output_hidden_states=True,
                    use_cache=False,
                )

            # hidden states (shifted)
            student_hidden = student_outputs.last_hidden_state[:, :-1].contiguous()
            teacher_hidden = teacher_outputs.last_hidden_state[:, :-1].contiguous()

            # labels mask and labels (shifted)
            labels_mask = inputs["labels"] != -100
            masked_input_ids = torch.where(
                labels_mask, inputs["input_ids"], torch.full_like(inputs["input_ids"], -100)
            )
            true_labels = masked_input_ids[:, 1:].contiguous()

            # heads
            student_head = unwrapped_student.get_output_embeddings()
            teacher_head = unwrapped_teacher.get_output_embeddings()

            # liger fused jsd loss
            loss = self.liger_jsd_loss(
                student_input=student_hidden,
                student_weight=student_head.weight,
                teacher_input=teacher_hidden,
                teacher_weight=teacher_head.weight,
                true_labels=true_labels,
                student_bias=getattr(student_head, "bias", None),
                teacher_bias=getattr(teacher_head, "bias", None),
            )
        else:
            # compute student output
            student_outputs = model(
                input_ids=inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
            )

            # compute teacher output in eval mode
            self.teacher_model.eval()
            with torch.no_grad():
                teacher_outputs = self.teacher_model(
                    input_ids=inputs["input_ids"],
                    attention_mask=inputs["attention_mask"],
                )

            # slice the logits for the generated tokens using the inputs["prompts"] lengths
            prompt_lengths = inputs["prompts"].shape[1]
            shifted_student_logits = student_outputs.logits[:, prompt_lengths - 1 : -1, :]
            shifted_teacher_logits = teacher_outputs.logits[:, prompt_lengths - 1 : -1, :]
            shifted_labels = inputs["labels"][:, prompt_lengths:]

            # compute loss
            loss = self.generalized_jsd_loss(
                student_logits=shifted_student_logits,
                teacher_logits=shifted_teacher_logits,
                labels=shifted_labels,
                beta=self.beta,
            )

        # empty cache
        empty_cache()

        # Return loss
        return (loss, student_outputs) if return_outputs else loss

    @staticmethod
    def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None):
        # Generate output with respect to the prompt-only
        generated_outputs = model.generate(
            input_ids=inputs["prompts"],
            attention_mask=inputs.get("prompt_attention_mask", None),
            generation_config=generation_config,
            return_dict_in_generate=True,
        )

        # Get the generated token IDs
        generated_tokens = generated_outputs.sequences
        # Calculate new attention mask
        new_attention_mask = torch.ones_like(generated_tokens)
        new_labels = generated_tokens.clone()

        # If there's pad_token_id, set attention mask to 0 for padding tokens
        if pad_token_id is not None:
            new_labels[new_labels == pad_token_id] = -100
            new_attention_mask[generated_tokens == pad_token_id] = 0

        return generated_tokens, new_attention_mask, new_labels

    def training_step(
        self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
    ) -> torch.Tensor:
        """
        Perform a training step for the Generalized Knowledge Distillation (GKD) model.

        This method implements the on-policy learning approach described in the GKD paper. With probability
        `self.lmbda`, it generates new responses using the student model, which are then used for training instead of
        the original inputs.
        """
        if self.seq_kd:
            with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model:
                new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
                    unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
                )
            inputs["input_ids"] = new_input_ids
            inputs["attention_mask"] = new_attention_mask
            inputs["labels"] = new_labels
        if random.random() <= self.lmbda:
            with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
                new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
                    unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
                )
            inputs["input_ids"] = new_input_ids
            inputs["attention_mask"] = new_attention_mask
            inputs["labels"] = new_labels

        loss = super().training_step(model, inputs, num_items_in_batch)
        return loss
class UnslothGKDTrainer(_UnslothGKDTrainer):
    """
    Trainer for Generalized Knowledge Distillation (GKD) of language models.

    For details on GKD, see the paper: [On-Policy Distillation of Language Models: Learning from Self-Generated
    Mistakes](https://huggingface.co/papers/2306.13649).

    Args:
        model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*):
            Model to be trained, or the string identifier of the model to be instantiated from a pretrained model.
        teacher_model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `str`, *optional*):
            Teacher model for knowledge distillation, or the string identifier of the model to be instantiated from a
            pretrained model.
        args ([`GKDConfig`], *optional*):
            Training arguments.
        data_collator ([`~transformers.DataCollator`], *optional*):
            Data collator to batch samples from the dataset. It defaults to a [`DataCollatorForChatML`] using the
            `processing_class`.
        train_dataset ([`~datasets.Dataset`], *optional*):
            Dataset for training.
        eval_dataset ([`~datasets.Dataset`] or `dict` of [`~datasets.Dataset`], *optional*):
            Dataset for evaluation.
        processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
           Class to process the data.
        compute_metrics (`Callable`, *optional*):
            Function to compute metrics at evaluation. Must take in an [`~transformers.EvalPrediction`] and return a
            dictionary string to float.
        callbacks (`list` of [`~transformers.TrainerCallback`], *optional*):
            Callbacks to use during training.
        optimizers (`tuple` of `torch.optim.Optimizer` and `torch.optim.lr_scheduler.LambdaLR`, *optional*, defaults to `(None, None)`):
            Tuple containing the optimizer and the learning rate scheduler to use for training.
        preprocess_logits_for_metrics (`Callable`, *optional*):
            Function to preprocess the logits before computing the metrics. Must take in the `logits` and `labels` and
            return the logits to be used for metrics computation.
        peft_config ([`~peft.PeftConfig`], *optional*):
            PEFT configuration to use PEFT for training. If `None`, PEFT is not used. If provided, the `model` will be
            wrapped with the specified PEFT adapter.
        formatting_func (`Callable`, *optional*):
            Function to format the dataset. Must take in an example and return an example.
    
    """
    def __init__(
        self,
        model = None,
        teacher_model = None,
        args = None,
        data_collator = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        compute_metrics = None,
        callbacks = None,
        preprocess_logits_for_metrics = None,
        peft_config = None,
        formatting_func = None,
        **kwargs
    ):
        if args is None: args = UnslothGKDConfig()
        use_bf16 = getattr(args, 'bf16', False)
        if type(use_bf16) is not bool: use_bf16 = False
        use_fp16 = getattr(args, 'fp16', False)
        if type(use_fp16) is not bool: use_fp16 = False
        force_float32 = False
        full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
        if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            # Forced float32 training
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            # Mixed precision training
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        if type(fp16_full_eval) is not bool: fp16_full_eval = False
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if type(bf16_full_eval) is not bool: bf16_full_eval = False
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = TransformersDataCollatorForLanguageModeling(
                    __tokenizer,
                    mlm = False,
                    mlm_probability = 0.0,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
            elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(
                    __tokenizer,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(
                        __tokenizer.tokenizer,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
                else:
                    data_collator = TransformersDataCollatorForLanguageModeling(
                        __tokenizer.tokenizer,
                        mlm = False,
                        mlm_probability = 0.0,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('gkd_trainer', other_metrics)
        
        # [TODO] Fix up DataParallel multiplying batch sizes
        # [TODO] DDP works, but DP seems to not work? [TODO]
        if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
            if getattr(args, "_n_gpu", 1) != 1:
                args._n_gpu = 1
        if "model" in locals() and hasattr(model, "for_training"):
            model.for_training()
        super().__init__(
            model = model,
            teacher_model = teacher_model,
            args = args,
            data_collator = data_collator,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            compute_metrics = compute_metrics,
            callbacks = callbacks,
            preprocess_logits_for_metrics = preprocess_logits_for_metrics,
            peft_config = peft_config,
            formatting_func = formatting_func,**kwargs)
        if "model" in locals() and hasattr(model, "for_inference"):
            model.for_inference()
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        if hasattr(self, 'accelerator'):
            scaler = self.accelerator.scaler
            current_model = model
            while hasattr(current_model, 'model'):
                current_model.accelerator_scaler = scaler
                current_model = current_model.model
            current_model.accelerator_scaler = scaler
        pass
        if hasattr(self, 'train'):
            self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
        pass
        
pass