File size: 70,634 Bytes
6bcbd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
"""
2025.11.3
2025.11.2
4.57.1
0.24.0
__UNSLOTH_VERSIONING__
"""

# Unsloth auto generated code
# Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.sft_trainer import (Any, AutoProcessor, BaseTrainer, Callable, DataCollator, DataCollatorForLanguageModeling, DataCollatorForVisionLanguageModeling, Dataset, EvalPrediction, FLASH_ATTENTION_VARIANTS, IterableDataset, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTConfig, SFTTrainer, TrainerCallback, TrainingArguments, Union, clone_chat_template, contextlib, create_model_from_path, dataclass, defaultdict, dft_loss, get_act_offloading_ctx_manager, is_conversational, logger, logging, nn, os, pack_dataset, pad, prepare_peft_model, selective_log_softmax, torch, Callable, DataCollator, DataCollatorForLanguageModeling, Dataset, IterableDataset, Optional, Union, os, pack_dataset, pad, Optional, PreTrainedModel, logger, os, torch, os)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
import inspect
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
from transformers.training_args import ParallelMode

# Wrap trainer with padding to right and enable training mode
import functools
from types import MethodType
def prepare_for_training_mode(f):
    @functools.wraps(f)
    def wrapper(self, *args, **kwargs):
        # Enable training mode
        if hasattr(self, 'model') and hasattr(self.model, "for_training"):
            self.model.for_training()
        output = f(self, *args, **kwargs)
        # Return inference mode
        if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
            self.model.for_inference()
        return output
    return wrapper
pass

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def chunked_selective_log_softmax(logits, index):
    # Split into 4 chunks only
    chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
    chunked_index  = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
    all_per_token_logps = []
    # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
    for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
        chunk_logits = chunk_logits.to(torch.float32)
        selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
        logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
        per_token_logps = selected_logits - logsumexp_values
        all_per_token_logps.append(per_token_logps)
    pass
    all_per_token_logps = torch.concat(all_per_token_logps)
    all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
    return all_per_token_logps

def calculate_pad_tokens_in_prompt(
    input_ids: torch.Tensor,
    logits_to_keep: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens 
    """
    if logits_to_keep >= input_ids.shape[1]:
        raise ValueError("logits_to_keep must be smaller than the sequence length.")

    prompt_section = input_ids[:, :-logits_to_keep]

    padding_mask = (prompt_section == pad_token_id)

    pad_token_counts = padding_mask.sum(dim=1)

    return pad_token_counts

def create_completion_attention_mask(
    completion_input_ids: torch.Tensor,
    left_pad_tokens_per_prompt: torch.Tensor,
    max_left_pad: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]

    Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
    and pad are pad tokens, this function would make a completion mask that would 0 out the pad
    and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
    """
    batch_size, completion_len = completion_input_ids.shape
    device = completion_input_ids.device

    num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt

    indices = torch.arange(completion_len, device=device).unsqueeze(0)
    shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)

    non_padding_mask = (completion_input_ids != pad_token_id)

    final_mask = shift_mask & non_padding_mask

    return final_mask

def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
    """
    Moves all padding tokens in each sequence of a batch to the right.
    """
    mask = (tensor != pad_id)
    # Must do stable=True since binary mark is unordered
    sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
    packed_tensor = torch.gather(tensor, 1, sorted_indices)
    return packed_tensor

def align_logprobs_with_mask(
    logprob_tensor: torch.Tensor,
    attention_mask: torch.Tensor,
    pad_value: float = 0.0
) -> torch.Tensor:
    """
    Aligns a log probability tensor with a given attention mask.
    """

    device = logprob_tensor.device
    batch_size, logprob_seq_len = logprob_tensor.shape
    mask_seq_len = attention_mask.shape[1]

    padded_logprobs = torch.full(
        attention_mask.shape,
        fill_value=pad_value,
        dtype=logprob_tensor.dtype,
        device=device
    )

    left_pad_counts = torch.argmax(attention_mask, dim=1)

    cols = torch.arange(logprob_seq_len, device=device)
    dest_indices = left_pad_counts.unsqueeze(1) + cols

    # Create destination row indices
    # Shape: [batch_size, logprob_seq_len]
    row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)

    # --- 4. Filter out-of-bounds indices and perform assignment ---
    # Create a mask to identify only the indices that are within the bounds
    # of the target tensor's sequence length.
    valid_mask = dest_indices < mask_seq_len

    # Use this mask to select only the valid row indices, column indices,
    # and the corresponding values from the logprob tensor.
    # This flattens the selected elements into 1D tensors.
    valid_rows = row_indices[valid_mask]
    valid_cols = dest_indices[valid_mask]
    valid_vals = logprob_tensor[valid_mask]

    # Place the valid values into their correct positions in the padded tensor
    # using a single, efficient advanced indexing operation.
    padded_logprobs[valid_rows, valid_cols] = valid_vals

    return padded_logprobs
@dataclass
class UnslothSFTConfig(SFTConfig):
    """
    
    Configuration class for the [`SFTTrainer`].

    This class includes only the parameters that are specific to SFT training. For a full list of training arguments,
    please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
    differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        > Parameters that control the model

        model_init_kwargs (`dict[str, Any]`, *optional*):
            Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
            argument of the [`SFTTrainer`] is provided as a string. If you're training a MoE architecture and want to
            include the load balancing/auxilliary loss as a part of the final loss, remember to set
            `output_router_logits=True` in this dictionary.
        chat_template_path (`str`, *optional*):
            If specified, sets the model's chat template. This can either be the path to a tokenizer (local directory
            or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, you must
            ensure that any special tokens referenced in the template are added to the tokenizer and that the model's
            embedding layer is resized accordingly.

        > Parameters that control the data preprocessing

        dataset_text_field (`str`, *optional*, defaults to `"text"`):
            Name of the column that contains text data in the dataset.
        dataset_kwargs (`dict[str, Any]`, *optional*):
            Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
            `skip_prepare_dataset`. When the model is a VLM, `skip_prepare_dataset` is automatically treated as `True`
            regardless of the provided value, since preprocessing is done on the fly.
        dataset_num_proc (`int`, *optional*):
            Number of processes to use for processing the dataset.
        eos_token (`str`, *optional*):
            Token used to indicate the end of a turn or sequence. If `None`, it defaults to
            `processing_class.eos_token`.
        pad_token (`str`, *optional*):
            Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`,
            it falls back to `processing_class.eos_token`.
        max_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from the right.
            If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
        packing (`bool`, *optional*, defaults to `False`):
            Whether to group multiple sequences into fixed-length blocks to improve computational efficiency and reduce
            padding. Uses `max_length` to define sequence length.
        packing_strategy (`str`, *optional*, defaults to `"bfd"`):
            Strategy for packing sequences. Can be either `"bfd"` (best-fit decreasing, default), or `"wrapped"`.
        padding_free (`bool`, *optional*, defaults to `False`):
            Whether to perform forward passes without padding by flattening all sequences in the batch into a single
            continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only
            supported with the FlashAttention 2 or 3, which can efficiently handle the flattened batch structure. When
            packing is enabled with strategy `"bfd"`, padding-free is enabled, regardless of the value of this
            parameter.
        pad_to_multiple_of (`int`, *optional*):
            If set, the sequences will be padded to a multiple of this value.
        eval_packing (`bool`, *optional*):
            Whether to pack the eval dataset. If `None`, uses the same value as `packing`.

        > Parameters that control the training

        completion_only_loss (`bool`, *optional*):
            Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is computed
            only on the completion, which is supported only for [prompt-completion](#prompt-completion) datasets. If
            `False`, loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset:
            loss is computed on the completion for [prompt-completion](#prompt-completion) datasets, and on the full
            sequence for [language modeling](#language-modeling) datasets.
        assistant_only_loss (`bool`, *optional*, defaults to `False`):
            Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is computed only
            on the assistant responses, which is supported only for [conversational](#conversational) datasets. If
            `False`, loss is computed on the entire sequence.
        loss_type (`str`, *optional*, defaults to `"nll"`):
            Type of loss to use. Possible values are `"nll"` (negative log-likelihood, default) and `"dft"` (Dynamic
            Fine-Tuning, as described in [this paper](https://huggingface.co/papers/2508.05629)).
        activation_offloading (`bool`, *optional*, defaults to `False`):
            Whether to offload the activations to the CPU.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    max_seq_length : Optional[int] = field(
        default = None,
        metadata = {'help': 'Maximum sequence length to truncate to.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = None,
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        parallelism_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        project = 'huggingface',
        trackio_space_id = 'trackio',
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        hub_revision = None,
        gradient_checkpointing = True,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        liger_kernel_config = None,
        eval_use_gather_object = False,
        average_tokens_across_devices = True,
        model_init_kwargs = None,
        chat_template_path = None,
        dataset_text_field = 'text',
        dataset_kwargs = None,
        dataset_num_proc = None,
        eos_token = None,
        pad_token = None,
        max_length = 1024,
        packing = False,
        packing_strategy = 'bfd',
        padding_free = False,
        pad_to_multiple_of = None,
        eval_packing = None,
        completion_only_loss = None,
        assistant_only_loss = False,
        loss_type = 'nll',
        activation_offloading = False,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        max_seq_length = None,
        **kwargs,
    ):
        if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = min(max(cpu_count()+4, 2), 64)
        if os.environ.get('UNSLOTH_ENABLE_FLEX_ATTENTION', '0') == '1':
            from unsloth_zoo.flex_attention import HAS_FLEX_ATTENTION
            if HAS_FLEX_ATTENTION and pad_to_multiple_of is None:
                from unsloth_zoo.flex_attention import FLEX_ATTENTION_BLOCK_SIZE
                pad_to_multiple_of = FLEX_ATTENTION_BLOCK_SIZE
        
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            parallelism_config = parallelism_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            project = project,
            trackio_space_id = trackio_space_id,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            hub_revision = hub_revision,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            liger_kernel_config = liger_kernel_config,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            model_init_kwargs = model_init_kwargs,
            chat_template_path = chat_template_path,
            dataset_text_field = dataset_text_field,
            dataset_kwargs = dataset_kwargs,
            dataset_num_proc = dataset_num_proc,
            eos_token = eos_token,
            pad_token = pad_token,
            max_length = max_length,
            packing = packing,
            packing_strategy = packing_strategy,
            padding_free = padding_free,
            pad_to_multiple_of = pad_to_multiple_of,
            eval_packing = eval_packing,
            completion_only_loss = completion_only_loss,
            assistant_only_loss = assistant_only_loss,
            loss_type = loss_type,
            activation_offloading = activation_offloading,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
        self.max_seq_length = max_seq_length
pass

class _UnslothSFTTrainer(BaseTrainer):
    """"""

    _tag_names = ["trl", "sft"]
    _name = "SFT"

    def __init__(
        self,
        model: Union[str, PreTrainedModel],
        args: Optional[Union[SFTConfig, TrainingArguments]] = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None,
        compute_loss_func: Optional[Callable] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
        optimizer_cls_and_kwargs: Optional[tuple[type[torch.optim.Optimizer], dict[str, Any]]] = None,
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional["PeftConfig"] = None,
        formatting_func: Optional[Callable[[dict], str]] = None,
    ):
        # Args
        if args is None:
            model_name = model if isinstance(model, str) else model.config._name_or_path
            model_name = model_name.split("/")[-1]
            args = SFTConfig(f"{model_name}-SFT")
        elif isinstance(args, TrainingArguments) and not isinstance(args, SFTConfig):
            dict_args = args.to_dict()
            dict_args["hub_token"] = args.hub_token  # to_dict hides the hub_token
            dict_args.pop("push_to_hub_token")
            args = SFTConfig(**dict_args)

        # Model
        if isinstance(model, str):
            model = create_model_from_path(model, **args.model_init_kwargs or {})
        else:
            if args.model_init_kwargs is not None:
                logger.warning(
                    "You passed `model_init_kwargs` to the `SFTConfig`, but your model is already instantiated. "
                    "The `model_init_kwargs` will be ignored."
                )
        model_id = model.config._name_or_path

        # Processing class
        if processing_class is None:
            processing_class = AutoProcessor.from_pretrained(model_id)

        # Handle pad token for processors or tokenizers
        if isinstance(processing_class, ProcessorMixin):
            tokenizer = processing_class.tokenizer
            self._is_vlm = False
        elif isinstance(processing_class, PreTrainedTokenizerBase):
            tokenizer = processing_class
            self._is_vlm = False
        else:
            raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")

        if args.eos_token is not None:
            eos_token = args.eos_token
            eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
            if eos_token_id is None:
                raise ValueError(
                    f"The specified `eos_token` ('{eos_token}') is not found in the vocabulary of the given "
                    f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `eos_token` exists "
                    "in the vocabulary before using it as an EOS token."
                )
            tokenizer.eos_token_id = eos_token_id

        if args.chat_template_path is not None:
            if os.path.isfile(args.chat_template_path) and args.chat_template_path.endswith((".jinja", ".j2")):
                with open(args.chat_template_path, encoding="utf-8") as chat_template_file:
                    processing_class.chat_template = chat_template_file.read()
                added_tokens = []
            else:
                model, processing_class, added_tokens = clone_chat_template(
                    model, processing_class, args.chat_template_path
                )
        else:
            added_tokens = []

        # Catch some wrong configurations related to VLMs
        if self._is_vlm and args.packing:
            raise ValueError(
                "Packing is not supported for vision-language models. Please set `packing=False` in the SFTConfig."
            )
        if self._is_vlm and args.padding_free:
            raise ValueError(
                "Padding-free training is yet not supported for vision-language models. Please set "
                "`padding_free=False` in the `SFTConfig`."
            )
        if self._is_vlm and args.assistant_only_loss:
            raise ValueError(
                "Assistant-only loss is not yet supported for vision-language models. Please set "
                "`assistant_only_loss=False` in the `SFTConfig`."
            )

        # PEFT configuration and model wrapping
        if False:
            if added_tokens:
                # Ensure that the added tokens are trainable
                if peft_config.trainable_token_indices is None:
                    peft_config.trainable_token_indices = {"embed_tokens": added_tokens}
                elif "embed_tokens" not in peft_config.trainable_token_indices:
                    peft_config.trainable_token_indices["embed_tokens"] = added_tokens
                else:
                    peft_config.trainable_token_indices["embed_tokens"].extend(added_tokens)

                # Ensure that the lm_head is trainable
                if peft_config.modules_to_save is None or "lm_head" not in peft_config.modules_to_save:
                    logger.warning(
                        "Cloning chat template added new tokens to the tokenizer, but 'lm_head' is not in PEFT's "
                        "`modules_to_save`. As a result, the model may not learn to generate outputs with these new "
                        "tokens, leading to degraded generation quality. To fix this, add "
                        "`modules_to_save=['lm_head']` to your PEFT configuration."
                    )

                    if peft_config.modules_to_save is None:
                        peft_config.modules_to_save = ["lm_head"]
                    else:
                        peft_config.modules_to_save.append("lm_head")

        # In Prompt Tuning a small set of trainable virtual tokens [continuous prompt embeddings] is prepended to the
        # input. We store the number of these tokens so we can account for them correctly when calculating accuracy.
        self.num_virtual_tokens = 0

        if False:
            model = prepare_peft_model(model, peft_config, args)
            if model.active_adapter in model.peft_config:
                peft_model_config = model.peft_config[model.active_adapter]
                self.num_virtual_tokens = getattr(peft_model_config, "num_virtual_tokens", 0)

        # Data collator
        # BFD packing requires padding-free mode; otherwise, the collator outputs padded attention masks, causing
        # FlashAttention to ignore position_ids and recompute them incorrectly from the padded attention mask.
        self.padding_free = args.padding_free or (args.packing and args.packing_strategy == "bfd")
        use_flash_attention = model.config._attn_implementation in FLASH_ATTENTION_VARIANTS
        if self.padding_free:
            if data_collator is not None:
                raise ValueError("Passing a custom data collator is not supported when using padding-free.")
            if args.packing and args.packing_strategy == "wrapped":
                logger.warning(
                    "You are passing `padding_free=True` with the 'wrapped' packing strategy, which is not "
                    "recommended. Please refer to the documentation to understand why this is not recommended."
                )
            if not use_flash_attention:
                logger.warning(
                    "Padding-free training is enabled, but the attention implementation is not set to a supported "
                    "flash attention variant. Padding-free training flattens batches into a single sequence, and only "
                    "the following implementations are known to reliably support this: "
                    f"{', '.join(sorted(FLASH_ATTENTION_VARIANTS))}. Using other implementations may lead to "
                    "unexpected behavior. To ensure compatibility, set `attn_implementation` in the model "
                    "configuration to one of these supported options or verify that your attention mechanism can "
                    "handle flattened sequences."
                )

            if args.per_device_train_batch_size == 1 and not args.packing:
                logger.warning(
                    "You are using a per_device_train_batch_size of 1 with padding-free training. Using a batch size "
                    "of 1 anihilate the benefits of padding-free training. Please consider increasing the batch size "
                    "to at least 2."
                )

        # Decide whether to use completion-only loss: if not specified, then it is set to True if the dataset format
        # is prompt-completion, and False if the dataset format is language modeling.
        dataset_sample = next(iter(train_dataset))
        if args.completion_only_loss is None:
            self.completion_only_loss = "prompt" in dataset_sample and "completion" in dataset_sample
        else:
            self.completion_only_loss = args.completion_only_loss

        self._is_vision_dataset = "image" in dataset_sample or "images" in dataset_sample
        if self._is_vision_dataset and not self._is_vlm:
            raise ValueError(
                "The dataset appears to be vision-related (contains 'image' or 'images' keys), but the provided "
                "model does not seem to be a vision-language model. Please check your model and dataset."
            )

        if data_collator is None and not self._is_vision_dataset:
            # Get the pad token: if not provided, use the one from the processing class or the eos token
            # if the processing class does not have a pad token.
            pad_token = args.pad_token or tokenizer.pad_token or tokenizer.eos_token
            pad_token_id = tokenizer.convert_tokens_to_ids(pad_token)
            if pad_token_id is None:
                raise ValueError(
                    f"The specified `pad_token` ('{pad_token}') is not found in the vocabulary of the given "
                    f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `pad_token` exists "
                    "in the vocabulary before using it as a padding token."
                )
            data_collator = DataCollatorForLanguageModeling(
                pad_token_id=pad_token_id,
                completion_only_loss=self.completion_only_loss,
                padding_free=self.padding_free,
                pad_to_multiple_of=args.pad_to_multiple_of,
            )
        elif data_collator is None and self._is_vision_dataset:
            data_collator = DataCollatorForVisionLanguageModeling(
                processor=processing_class,
                max_length=args.max_length,
                completion_only_loss=self.completion_only_loss,
                pad_to_multiple_of=args.pad_to_multiple_of,
                dataset_text_field=args.dataset_text_field,
            )

        if args.packing and args.packing_strategy == "bfd" and not use_flash_attention:
            logger.warning(
                "You are using packing, but the attention implementation is not set to a supported flash attention "
                "variant. Packing gathers multiple samples into a single sequence, and only the following "
                f"implementations are known to reliably support this: {', '.join(sorted(FLASH_ATTENTION_VARIANTS))}. "
                "Using other implementations may lead to cross-contamination between samples. To avoid this, either "
                "disable packing by setting `packing=False`, or set `attn_implementation` in the model configuration "
                "to one of these supported options."
            )
        if args.assistant_only_loss and not is_conversational(dataset_sample):
            raise ValueError(
                "You set `assistant_only_loss=True`, but the dataset is not conversational. This option is only "
                "supported for conversational datasets."
            )

        # Dataset
        # Skip dataset preparation if `skip_prepare_dataset=True` in `dataset_kwargs`, or if it's a VLM, where
        # preprocessing [e.g., image-to-pixel conversion] is too costly and done on the fly instead.
        skip_prepare_dataset = (
            args.dataset_kwargs is not None
            and args.dataset_kwargs.get("skip_prepare_dataset", False)
            or self._is_vision_dataset
        )
        if not skip_prepare_dataset:
            if self.completion_only_loss and formatting_func:
                raise ValueError(
                    "A formatting function was provided while `completion_only_loss=True`, which is incompatible. "
                    "Using a formatter converts the dataset to a language modeling type, conflicting with "
                    "completion-only loss. To resolve this, apply your formatting function before passing the "
                    "dataset, or disable `completion_only_loss` in `SFTConfig`."
                )
            train_dataset = self._prepare_dataset(
                train_dataset, processing_class, args, args.packing, formatting_func, "train"
            )
            if eval_dataset is not None:
                packing = args.packing if args.eval_packing is None else args.eval_packing
                if isinstance(eval_dataset, dict):
                    eval_dataset = {
                        key: self._prepare_dataset(dataset, processing_class, args, packing, formatting_func, key)
                        for key, dataset in eval_dataset.items()
                    }
                else:
                    eval_dataset = self._prepare_dataset(
                        eval_dataset, processing_class, args, packing, formatting_func, "eval"
                    )

        # Loss function
        if args.loss_type == "nll":
            pass  # use the default loss
        elif args.loss_type == "dft":
            if compute_loss_func is not None:
                raise ValueError(
                    "You passed a `compute_loss_func` together with `loss_type='dft'` to the `SFTTrainer`. "
                    "When using `loss_type='dft'`, the loss function is internally set to the DFT loss, so passing a "
                    "`compute_loss_func` is not allowed."
                )
            compute_loss_func = dft_loss
        else:
            raise ValueError(f"Invalid `loss_type` {args.loss_type} passed. Supported values are 'nll' and 'dft'.")

        # Initialize the metrics
        self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
        self._total_train_tokens = 0

        # Initialize the Trainer. Parent class will handle:
        # - DeepSpeed configuration [through create_accelerator_and_postprocess]
        # - FSDP setup
        # - Distributed training setup
        # - Optimizer and scheduler creation

        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_loss_func=compute_loss_func,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            optimizer_cls_and_kwargs=optimizer_cls_and_kwargs,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        # Initialize activation offloading context
        if self.args.activation_offloading:
            self.maybe_activation_offload_context = get_act_offloading_ctx_manager(model=self.model)
        else:
            self.maybe_activation_offload_context = contextlib.nullcontext()

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        self.aux_loss_enabled = getattr(model.config, "output_router_logits", False)

    def _prepare_dataset(
        self,
        dataset: Union[Dataset, IterableDataset],
        processing_class,
        args,
        packing: bool,
        formatting_func: Optional[Callable[[dict], str]],
        dataset_name: str,
    ) -> Union[Dataset, IterableDataset]:
        # All Unsloth Zoo code licensed under LGPLv3
        try:
            if isinstance(dataset, ConstantLengthDataset): return dataset
        except:
            pass
    
        map_kwargs = {}
        use_desc = isinstance(dataset, Dataset)
        is_vlm = hasattr(processing_class, "tokenizer")
        tokenizer = processing_class
        if is_vlm: tokenizer = processing_class.tokenizer
    
        # Get max length
        max_seq_length = getattr(args, "max_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(args, "max_seq_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(self, "max_seq_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(self, "max_seq", 0)
        if max_seq_length == 0: raise RuntimeError("Unsloth: max_seq_length is 0! Please specify one!")
        dataset_text_field = getattr(args, "dataset_text_field", "text")
        do_truncation = max_seq_length != 0
        do_formatting_func = False
        do_tokenize = True
    
        # Get correct column names
        column_names = set(next(iter(dataset)).keys())
        used_column_names = ["input_ids"]
        if "attention_mask" in column_names:
            used_column_names.append("attention_mask")
    
        # Check if already tokenized so skip
        from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
        if "labels" in column_names:
            # Most likely forgot data collator!
            if is_vlm and not hasattr(tokenizer, "pad"):
                # Check if processing_class has a .pad, if not, use tokenizer.tokenizer
                raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
            self.data_collator = DataCollatorForSeq2Seq(tokenizer)
            used_column_names.append("labels")
            do_tokenize = False
        elif "input_ids" in column_names:
            # Skip dataset prep, and set data collator
            if is_vlm and not hasattr(tokenizer, "pad"):
                # Check if processing_class has a .pad, if not, use tokenizer.tokenizer
                raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
            self.data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
            do_tokenize = False
        elif dataset_text_field not in column_names:
            do_formatting_func = True
            if formatting_func is None:
                raise RuntimeError("Unsloth: You must specify a `formatting_func`")
        pass
    
        if do_tokenize:
            # Check double BOS tokens
            if do_formatting_func:
                test_text = formatting_func(next(iter(dataset)))
                if not isinstance(test_text, list):
                    raise ValueError(
                        "Unsloth: The `formatting_func` should return a list of processed strings."
                    )
                test_text = test_text[0]
            else:
                test_text = next(iter(dataset))[dataset_text_field][0]
    
            # Get chat template
            chat_template = getattr(processing_class, 'chat_template', '')
            if chat_template == '' and is_vlm:
                chat_template = getattr(tokenizer, 'chat_template', '')
            if chat_template is None:
                chat_template = ''
    
            # Get bos_token
            add_special_tokens = True
            bos_token_1 = getattr(processing_class, 'bos_token', None)
            bos_token_2 = getattr(tokenizer, 'bos_token', None)
            bos_token = bos_token_1 or bos_token_2
    
            if bos_token is not None:
                if test_text.startswith(bos_token) or bos_token in chat_template:
                    add_special_tokens = False
                    print("Unsloth: We found double BOS tokens - we shall remove one automatically.")
            pass
    
            # Create tokenize function
            def _tokenize(example):
                return tokenizer(
                    example[dataset_text_field] if not do_formatting_func else formatting_func(example),
                    truncation = do_truncation,
                    max_length = max_seq_length,
                    return_token_type_ids = False,
                    add_special_tokens = add_special_tokens,
                )
            pass
    
            if not isinstance(dataset, IterableDataset):
                dataset_num_proc = getattr(args, "dataset_num_proc", None)
                if dataset_num_proc is None:
                    from multiprocessing import cpu_count
                    dataset_num_proc = max(cpu_count()+4, 2)
                map_kwargs["num_proc"] = dataset_num_proc
            else:
                map_kwargs["batch_size"] = dataset._ex_iterable.batch_size
                
            if use_desc: map_kwargs["desc"] = f'Unsloth: Tokenizing ["{dataset_text_field}"]'
            dataset = dataset.map(_tokenize, batched = True, **map_kwargs)
    
            # If VLM, switch data collator since .pad is needed!
            if is_vlm and not hasattr(processing_class, "pad"):
                data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
                self.data_collator = data_collator
            pass
        pass
        if packing:
            # Try using new packing which works in TRL
            try:
                pack_dataset
            except:
                print("Unsloth: Hugging Face's packing is currently buggy - we're disabling it for now!")
                return dataset
    
            if max_seq_length == 0:
                raise ValueError("When packing is enabled, `max_seq_length` can't be `None`.")
    
            if use_desc: map_kwargs["desc"] = f"Unsloth: Packing {dataset_name} dataset"
            dataset = pack_dataset(
                dataset.select_columns(used_column_names),
                max_seq_length,
                getattr(args, "packing_strategy", "bfd"),
                map_kwargs,
            )
        pass
        return dataset
    
    def _set_signature_columns_if_needed(self):
        # If `self.args.remove_unused_columns` is True, non-signature columns are removed.
        # By default, this method sets `self._signature_columns` to the model's expected inputs (usually, "input_ids"
        # and "attention_mask"). When using `train_on_completion_only` we add a "completion_mask" column to the
        # dataset. So we need to override the default signature columns to include "completion_mask" as well.
        if self._signature_columns is None:
            if self._is_vision_dataset:
                self._signature_columns = ["messages", "prompt", "completion", "images"]
            else:
                self._signature_columns = ["input_ids", "labels", "seq_lengths", "completion_mask", "assistant_masks"]

    def compute_loss(
        self, model, inputs, return_outputs = False, num_items_in_batch = None
    ):
        outputs = super().compute_loss(
            model,
            inputs,
            return_outputs = return_outputs,
            num_items_in_batch = num_items_in_batch,
        )
        return outputs

    # Override training step to add activation offloading context.
    def training_step(self, *args, **kwargs):
        with self.maybe_activation_offload_context:
            return super().training_step(*args, **kwargs)

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        mode = "train" if self.model.training else "eval"
        metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()}  # average the metrics

        # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
        # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
        if mode == "eval":
            metrics = {f"eval_{key}": val for key, val in metrics.items()}

        logs.update(metrics)
        super().log(logs, start_time)
        self._metrics[mode].clear()

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)
class UnslothSFTTrainer(_UnslothSFTTrainer):
    """
    
    Trainer for Supervised Fine-Tuning (SFT) method.

    This class is a wrapper around the [`~transformers.Trainer`] class and inherits all of its attributes and methods.

    Example:

    ```python
    from datasets import load_dataset
    from trl import SFTTrainer

    dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]")

    trainer = SFTTrainer(model="Qwen/Qwen2-0.5B-Instruct", train_dataset=dataset)
    trainer.train()
    ```

    Args:
        model (`Union[str, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
              path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
              using `<ModelArchitecture>.from_pretrained` (where `<ModelArchitecture>` is derived from the model
              config) with the keyword arguments in `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object.
            If you're training a model with an MoE architecture and want to include the load balancing/auxilliary loss
            as a part of the final loss, remember to set the `output_router_logits` config of the model to `True`.
        args ([`SFTConfig`], *optional*):
            Configuration for this trainer. If `None`, a default configuration is used.
        data_collator ([`~transformers.DataCollator`], *optional*):
            Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
            Will default to [`~trainer.sft_trainer.DataCollatorForLanguageModeling`] if the model is a language model
            and [`~trainer.sft_trainer.DataCollatorForVisionLanguageModeling`] if the model is a vision-language model.
        train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
            Dataset to use for training. SFT supports both [language modeling](#language-modeling) type and
            [prompt-completion](#prompt-completion) type. The format of the samples can be either:

            - [Standard](dataset_formats#standard): Each sample contains plain text.
            - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
              and content).

            The trainer also supports processed datasets (tokenized) as long as they contain an `input_ids` field.
        eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
            Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
        processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.ProcessorMixin`], *optional*):
            Processing class used to process the data. If `None`, the processing class is loaded from the model's name
            with [`~transformers.AutoProcessor.from_pretrained`]. A padding token, `tokenizer.pad_token`, must be set.
            If the processing class has not set a padding token, `tokenizer.eos_token` will be used as the default.
        compute_loss_func (`Callable`, *optional*):
            A function that accepts the raw model outputs, labels, and the number of items in the entire accumulated
            batch (batch_size * gradient_accumulation_steps) and returns the loss. For example, see the default [loss
            function](https://github.com/huggingface/transformers/blob/052e652d6d53c2b26ffde87e039b723949a53493/src/transformers/trainer.py#L3618)
            used by [`Trainer`].
        compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
            The function that will be used to compute metrics at evaluation. Must take a
            [`~transformers.EvalPrediction`] and return a dictionary string to metric values. When passing
            [`SFTConfig`] with `batch_eval_metrics` set to `True`, your `compute_metrics` function must take a boolean
            `compute_result` argument. This will be triggered after the last eval batch to signal that the function
            needs to calculate and return the global summary statistics rather than accumulating the batch-level
            statistics.
        callbacks (list of [`~transformers.TrainerCallback`], *optional*):
            List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
            in [here](https://huggingface.co/docs/transformers/main_classes/callback).

            If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
            method.
        optimizers (`tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]]`, *optional*, defaults to `(None, None)`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of `AdamW` on your
            model and a scheduler given by [`~transformers.get_linear_schedule_with_warmup`] controlled by `args`.
        optimizer_cls_and_kwargs (`tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*):
            A tuple containing the optimizer class and keyword arguments to use. Overrides `optim` and `optim_args` in
            `args`. Incompatible with the `optimizers` argument.

            Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before
            initializing the Trainer.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*):
            A function that preprocess the logits right before caching them at each evaluation step. Must take two
            tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
            by this function will be reflected in the predictions received by `compute_metrics`.

            Note that the labels (second parameter) will be `None` if the dataset does not have them.
        peft_config ([`~peft.PeftConfig`], *optional*):
            PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
        formatting_func (`Callable`, *optional*):
            Formatting function applied to the dataset before tokenization. Applying the formatting function explicitly
            converts the dataset into a [language modeling](#language-modeling) type.
    
    """
    def __init__(
        self,
        model,
        args = None,
        data_collator = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        compute_loss_func = None,
        compute_metrics = None,
        callbacks = None,
        optimizer_cls_and_kwargs = None,
        preprocess_logits_for_metrics = None,
        peft_config = None,
        formatting_func = None,
        **kwargs
    ):
        if args is None: args = UnslothSFTConfig()
        use_bf16 = getattr(args, 'bf16', False)
        if type(use_bf16) is not bool: use_bf16 = False
        use_fp16 = getattr(args, 'fp16', False)
        if type(use_fp16) is not bool: use_fp16 = False
        force_float32 = False
        full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
        if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            # Forced float32 training
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            # Mixed precision training
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        if type(fp16_full_eval) is not bool: fp16_full_eval = False
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if type(bf16_full_eval) is not bool: bf16_full_eval = False
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if 'max_length' not in locals() and not hasattr(args, 'max_length'):
            pass
        else:
            if hasattr(args, 'max_seq_length') and args.max_seq_length is not None and args.max_seq_length > 0:
                if hasattr(args, 'max_length'):
                    args.max_length = args.max_seq_length
                    max_length = args.max_length
            else:
                model_max_length = getattr(model, 'max_seq_length', None)
                if model_max_length is None: model_max_length = getattr(model, 'max_length', None)
                if model_max_length is not None:
                    args.max_length = model_max_length
                    max_length = args.max_length
                elif hasattr(args, 'max_length') and args.max_length is not None:
                    max_length = args.max_length
                    # if we are here, then we are in a weird case where max_length is set but max_seq_length is not set
                    setattr(model, 'max_seq_length', max_length)
                else:
                    print('Unsloth: We did not find `max_seq_length` or `max_length` in the model or args. We will set it to 1024.')
                    args.max_length = 1024
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = TransformersDataCollatorForLanguageModeling(
                    __tokenizer,
                    mlm = False,
                    mlm_probability = 0.0,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
            elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(
                    __tokenizer,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(
                        __tokenizer.tokenizer,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
                else:
                    data_collator = TransformersDataCollatorForLanguageModeling(
                        __tokenizer.tokenizer,
                        mlm = False,
                        mlm_probability = 0.0,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('sft_trainer', other_metrics)
        IGNORED_TOKENIZER_NAMES = os.environ.get('UNSLOTH_IGNORED_TOKENIZER_NAMES', '').split('\n')
        from unsloth_zoo.tokenizer_utils import fix_untrained_tokens
        from unsloth_zoo.training_utils  import fix_zero_training_loss
        if 'tokenizer' not in locals(): tokenizer = processing_class
        fix_untrained_tokens(model, tokenizer, train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16)
        fix_zero_training_loss(model, tokenizer, train_dataset)
        
        # [TODO] Fix up DataParallel multiplying batch sizes
        # [TODO] DDP works, but DP seems to not work? [TODO]
        if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
            if getattr(args, "_n_gpu", 1) != 1:
                args._n_gpu = 1
        if "model" in locals() and hasattr(model, "for_training"):
            model.for_training()
        super().__init__(
            model = model,
            args = args,
            data_collator = data_collator,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            compute_loss_func = compute_loss_func,
            compute_metrics = compute_metrics,
            callbacks = callbacks,
            optimizer_cls_and_kwargs = optimizer_cls_and_kwargs,
            preprocess_logits_for_metrics = preprocess_logits_for_metrics,
            peft_config = peft_config,
            formatting_func = formatting_func,**kwargs)
        if "model" in locals() and hasattr(model, "for_inference"):
            model.for_inference()
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        if hasattr(self, 'accelerator'):
            scaler = self.accelerator.scaler
            current_model = model
            while hasattr(current_model, 'model'):
                current_model.accelerator_scaler = scaler
                current_model = current_model.model
            current_model.accelerator_scaler = scaler
        pass
        if hasattr(self, 'train'):
            self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
        pass
        
pass


if hasattr(logger, "addFilter"):
    import logging
    class HideLoggingMessage(logging.Filter):
        def __init__(self, text): self.text = text
        def filter(self, x): return not (self.text in x.getMessage())
    pass
    logger.addFilter(HideLoggingMessage("`use_cache=True`"))