|
|
""" |
|
|
2025.11.3 |
|
|
2025.11.2 |
|
|
4.57.1 |
|
|
0.24.0 |
|
|
__UNSLOTH_VERSIONING__ |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import Tensor |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
|
from trl.trainer.grpo_trainer import (Any, AutoConfig, AutoModelForSequenceClassification, AutoProcessor, AutoTokenizer, BaseTrainer, DataLoader, Dataset, FSDP, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RepeatSampler, RewardFunc, Sampler, SyncRefModelCallback, TrainerCallback, Union, VLLMClient, _ForwardRedirection, apply_chat_template, broadcast_object_list, datasets, defaultdict, deque, disable_dropout_in_model, ensure_master_addr_port, entropy_from_logits, gather, gather_object, identity, inspect, is_conversational, is_datasets_available, is_flash_attn_2_available, is_liger_kernel_available, is_peft_model, is_rich_available, is_vllm_available, logger, logging, maybe_apply_chat_template, nanmax, nanmin, nanstd, nn, nullcontext, os, pad, partial, prepare_deepspeed, prepare_fsdp, prepare_multimodal_messages, prepare_peft_model, print_prompt_completions_sample, profiling_context, profiling_decorator, seed_worker, selective_log_softmax, set_seed, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, textwrap, torch, transformers, unsplit_pixel_values_by_grid, unwrap_model_for_generation, wandb, Any, Union, gather, gather_object, is_conversational, logging, nanmax, nanmin, nanstd, os, pad, torch, FSDP, Optional, apply_chat_template, broadcast_object_list, gather, gather_object, is_flash_attn_2_available, maybe_apply_chat_template, nullcontext, os, pad, prepare_multimodal_messages, profiling_context, torch, transformers, unwrap_model_for_generation, entropy_from_logits, os, pad, selective_log_softmax, torch, transformers, Any, Union, profiling_decorator, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, torch, unsplit_pixel_values_by_grid, Optional, PreTrainedModel, logger, os, torch, FSDP, nn, os, FSDP, nn, torch, GRPOTrainer, gather, nanmax, nanmin, os, torch) |
|
|
|
|
|
|
|
|
import os |
|
|
from typing import * |
|
|
from dataclasses import dataclass, field |
|
|
from packaging.version import Version |
|
|
import torch |
|
|
import numpy as np |
|
|
from contextlib import nullcontext |
|
|
from torch.nn import functional as F |
|
|
import inspect |
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
from transformers.training_args import ParallelMode |
|
|
|
|
|
|
|
|
import functools |
|
|
from types import MethodType |
|
|
def prepare_for_training_mode(f): |
|
|
@functools.wraps(f) |
|
|
def wrapper(self, *args, **kwargs): |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_training"): |
|
|
self.model.for_training() |
|
|
output = f(self, *args, **kwargs) |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_inference"): |
|
|
self.model.for_inference() |
|
|
return output |
|
|
return wrapper |
|
|
pass |
|
|
|
|
|
torch_compile_options = { |
|
|
"epilogue_fusion" : True, |
|
|
"max_autotune" : False, |
|
|
"shape_padding" : True, |
|
|
"trace.enabled" : False, |
|
|
"triton.cudagraphs" : False, |
|
|
} |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
|
def chunked_selective_log_softmax(logits, index): |
|
|
|
|
|
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) |
|
|
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) |
|
|
all_per_token_logps = [] |
|
|
|
|
|
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): |
|
|
chunk_logits = chunk_logits.to(torch.float32) |
|
|
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) |
|
|
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) |
|
|
per_token_logps = selected_logits - logsumexp_values |
|
|
all_per_token_logps.append(per_token_logps) |
|
|
pass |
|
|
all_per_token_logps = torch.concat(all_per_token_logps) |
|
|
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) |
|
|
return all_per_token_logps |
|
|
|
|
|
def calculate_pad_tokens_in_prompt( |
|
|
input_ids: torch.Tensor, |
|
|
logits_to_keep: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens |
|
|
""" |
|
|
if logits_to_keep >= input_ids.shape[1]: |
|
|
raise ValueError("logits_to_keep must be smaller than the sequence length.") |
|
|
|
|
|
prompt_section = input_ids[:, :-logits_to_keep] |
|
|
|
|
|
padding_mask = (prompt_section == pad_token_id) |
|
|
|
|
|
pad_token_counts = padding_mask.sum(dim=1) |
|
|
|
|
|
return pad_token_counts |
|
|
|
|
|
def create_completion_attention_mask( |
|
|
completion_input_ids: torch.Tensor, |
|
|
left_pad_tokens_per_prompt: torch.Tensor, |
|
|
max_left_pad: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] |
|
|
|
|
|
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens |
|
|
and pad are pad tokens, this function would make a completion mask that would 0 out the pad |
|
|
and p tokens. so in this example [0,0,0,1,1,1,0,0,0] |
|
|
""" |
|
|
batch_size, completion_len = completion_input_ids.shape |
|
|
device = completion_input_ids.device |
|
|
|
|
|
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt |
|
|
|
|
|
indices = torch.arange(completion_len, device=device).unsqueeze(0) |
|
|
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) |
|
|
|
|
|
non_padding_mask = (completion_input_ids != pad_token_id) |
|
|
|
|
|
final_mask = shift_mask & non_padding_mask |
|
|
|
|
|
return final_mask |
|
|
|
|
|
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: |
|
|
""" |
|
|
Moves all padding tokens in each sequence of a batch to the right. |
|
|
""" |
|
|
mask = (tensor != pad_id) |
|
|
|
|
|
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) |
|
|
packed_tensor = torch.gather(tensor, 1, sorted_indices) |
|
|
return packed_tensor |
|
|
|
|
|
def align_logprobs_with_mask( |
|
|
logprob_tensor: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
pad_value: float = 0.0 |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Aligns a log probability tensor with a given attention mask. |
|
|
""" |
|
|
|
|
|
device = logprob_tensor.device |
|
|
batch_size, logprob_seq_len = logprob_tensor.shape |
|
|
mask_seq_len = attention_mask.shape[1] |
|
|
|
|
|
padded_logprobs = torch.full( |
|
|
attention_mask.shape, |
|
|
fill_value=pad_value, |
|
|
dtype=logprob_tensor.dtype, |
|
|
device=device |
|
|
) |
|
|
|
|
|
left_pad_counts = torch.argmax(attention_mask, dim=1) |
|
|
|
|
|
cols = torch.arange(logprob_seq_len, device=device) |
|
|
dest_indices = left_pad_counts.unsqueeze(1) + cols |
|
|
|
|
|
|
|
|
|
|
|
row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_mask = dest_indices < mask_seq_len |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_rows = row_indices[valid_mask] |
|
|
valid_cols = dest_indices[valid_mask] |
|
|
valid_vals = logprob_tensor[valid_mask] |
|
|
|
|
|
|
|
|
|
|
|
padded_logprobs[valid_rows, valid_cols] = valid_vals |
|
|
|
|
|
return padded_logprobs |
|
|
def grpo_compute_loss( |
|
|
ref_logits, |
|
|
new_logits, |
|
|
old_logits, |
|
|
sampling_per_token_logps, |
|
|
input_ids, |
|
|
mask, |
|
|
beta, |
|
|
advantages, |
|
|
**kwargs |
|
|
): |
|
|
|
|
|
|
|
|
loss_type = kwargs.get("loss_type", "grpo") |
|
|
epsilon_low = kwargs.get("epsilon_low", 0.2) |
|
|
epsilon_high = kwargs.get("epsilon_high", 0.2) |
|
|
max_completion_length = kwargs.get("max_completion_length", 8192) |
|
|
delta = kwargs.get("delta", None) |
|
|
temperature = kwargs.get("temperature", 1.0) |
|
|
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0) |
|
|
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0) |
|
|
logit_softcapping = kwargs.get("logit_softcapping", 0.0) |
|
|
importance_sampling_level = kwargs.get("importance_sampling_level", "token") |
|
|
num_items_in_batch = kwargs.get("num_items_in_batch", None) |
|
|
current_gradient_accumulation_steps = kwargs.get("current_gradient_accumulation_steps", 1) |
|
|
num_processes = kwargs.get("num_processes", 1) |
|
|
use_vllm = kwargs.get("use_vllm", False) |
|
|
vllm_importance_sampling_cap = kwargs.get("vllm_importance_sampling_cap", 2.0) |
|
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
|
|
|
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping) |
|
|
|
|
|
new_logits = new_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: new_logits = new_logits / temperature |
|
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
with torch.no_grad(): |
|
|
if beta != 0.0: |
|
|
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0" |
|
|
|
|
|
|
|
|
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping) |
|
|
|
|
|
ref_logits = ref_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: ref_logits = ref_logits / temperature |
|
|
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
ref = ref_x - torch.logsumexp(ref_logits, dim = -1) |
|
|
pass |
|
|
|
|
|
if old_logits is not None: |
|
|
|
|
|
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping) |
|
|
|
|
|
old_logits = old_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: old_logits = old_logits / temperature |
|
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
|
pass |
|
|
if use_vllm and sampling_per_token_logps is not None: |
|
|
|
|
|
importance_sampling_ratio = torch.exp((old * mask) - sampling_per_token_logps) |
|
|
importance_sampling_ratio = torch.clamp( |
|
|
importance_sampling_ratio, max=vllm_importance_sampling_cap |
|
|
) |
|
|
pass |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
if beta != 0.0: |
|
|
kl_i = torch.exp(ref - new) - (ref - new) - 1.0 |
|
|
|
|
|
else: |
|
|
|
|
|
if importance_sampling_level == "sequence": |
|
|
kl_i = new.new_zeros(new.size(0), 1) |
|
|
else: |
|
|
kl_i = torch.zeros_like(new) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if old_logits is not None: |
|
|
log_ratio = new - old |
|
|
else: |
|
|
log_ratio = new - new.detach() |
|
|
|
|
|
if importance_sampling_level == "token": |
|
|
log_importance_weights = log_ratio |
|
|
elif importance_sampling_level == "sequence": |
|
|
log_importance_weights = (log_ratio * mask).sum(-1) / mask.sum(-1).clamp(min=1.0) |
|
|
log_importance_weights = log_importance_weights.unsqueeze(-1) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unknown importance sampling level: {importance_sampling_level}. Possible values are 'token' " |
|
|
"and 'sequence'." |
|
|
) |
|
|
|
|
|
coef_1 = torch.exp(log_importance_weights) |
|
|
|
|
|
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high) |
|
|
|
|
|
if delta is not None: |
|
|
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1) |
|
|
else: |
|
|
loss_1 = coef_1 * advantages.unsqueeze(1) |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_2 = coef_2 * advantages.unsqueeze(1) |
|
|
loss_i = -torch.min(loss_1, loss_2) |
|
|
|
|
|
if use_vllm and sampling_per_token_logps is not None: |
|
|
loss_i = loss_i * importance_sampling_ratio |
|
|
|
|
|
with torch.no_grad(): |
|
|
delta = torch.abs(old - sampling_per_token_logps) |
|
|
delta = delta * mask |
|
|
flat_is_ratio = importance_sampling_ratio * mask |
|
|
else: |
|
|
delta = torch.tensor([]).detach() |
|
|
flat_is_ratio = torch.tensor([]).detach() |
|
|
if beta != 0.0: |
|
|
loss_i = loss_i + beta * kl_i |
|
|
|
|
|
mask = mask.to(torch.float32) |
|
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
|
|
|
if loss_type == "grpo": |
|
|
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean() |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "bnpo": |
|
|
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0) |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "dr_grpo": |
|
|
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length) |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "dapo": |
|
|
normalizer = num_items_in_batch/ num_processes |
|
|
loss = (loss_i * mask).sum() / normalizer |
|
|
else: |
|
|
raise ValueError(f"Unknown loss type: {loss_type}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def masked_batch_mean(x): |
|
|
with torch.inference_mode(): |
|
|
completion_length = n_mask_per_reward.mean() |
|
|
if x.shape[1] == 1: |
|
|
return completion_length, x.mean() |
|
|
else: |
|
|
mean_kl_per_reward = (x * mask).sum(1) / n_mask_per_reward |
|
|
mean_kl = mean_kl_per_reward.mean() |
|
|
return completion_length, mean_kl |
|
|
completion_length, mean_kl = masked_batch_mean(kl_i) |
|
|
return loss, completion_length, mean_kl, delta, flat_is_ratio |
|
|
|
|
|
class UnslothEfficientGRPO(torch.autograd.Function): |
|
|
|
|
|
@staticmethod |
|
|
def forward(ctx, _new_hidden_states, _old_hidden_states, _ref_hidden_states, _sampling_per_token_logps, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1, extra_kwargs=None): |
|
|
if extra_kwargs is None: |
|
|
extra_kwargs = {} |
|
|
def compute_loss(new_hidden_states, old_hidden_states, ref_hidden_states, sampling_per_token_logps, input_ids, mask, advantages, scaling): |
|
|
new_logits = torch.matmul(new_hidden_states.to(lm_head.dtype), lm_head.t()) |
|
|
new_logits = new_logits[:, :-1, :] |
|
|
with torch.no_grad(): |
|
|
if beta != 0.0: |
|
|
ref_logits = torch.matmul(ref_hidden_states.to(lm_head.dtype), lm_head.t()) |
|
|
ref_logits = ref_logits[:, :-1, :] |
|
|
else: |
|
|
ref_logits = None |
|
|
if old_hidden_states is not None: |
|
|
old_logits = torch.matmul(old_hidden_states.to(lm_head.dtype), lm_head.t()) |
|
|
old_logits = old_logits[:, :-1, :] |
|
|
else: |
|
|
old_logits = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss, completion_length, mean_kl, delta, flat_is_ratio = grpo_compute_loss( |
|
|
ref_logits, |
|
|
new_logits, |
|
|
old_logits, |
|
|
sampling_per_token_logps, |
|
|
input_ids, |
|
|
mask, |
|
|
beta, |
|
|
advantages, |
|
|
**extra_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
scaled_loss = loss * scaling |
|
|
|
|
|
return scaled_loss, (loss.detach(), completion_length, mean_kl, delta, flat_is_ratio) |
|
|
pass |
|
|
|
|
|
device =_new_hidden_states.device |
|
|
grad_inputs = torch.empty_like(_new_hidden_states) |
|
|
accumulated_loss = torch.zeros(1, device = device) |
|
|
accumulated_completion_length = torch.zeros(1, device = device) |
|
|
accumulated_mean_kl = torch.zeros(1, device = device) |
|
|
accumulated_delta = [] |
|
|
accumulated_flat_is_ratio = [] |
|
|
def accumulate_chunk( |
|
|
new_hidden_states_j, |
|
|
old_hidden_states_j, |
|
|
ref_hidden_states_j, |
|
|
sampling_per_token_logps_j, |
|
|
input_ids_j, |
|
|
mask_j, |
|
|
advantages_j, |
|
|
scaling, |
|
|
grad_inputs_j, |
|
|
): |
|
|
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl, chunk_delta, chunk_flat_is_ratio)) = torch.func.grad_and_value( |
|
|
compute_loss, |
|
|
argnums = (0,), |
|
|
has_aux = True, |
|
|
)(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, sampling_per_token_logps_j, input_ids_j, mask_j, advantages_j, scaling) |
|
|
accumulated_loss .add_(unscaled_loss) |
|
|
accumulated_completion_length.add_(chunk_completion_length) |
|
|
accumulated_mean_kl .add_(chunk_mean_kl) |
|
|
accumulated_delta .append(chunk_delta) |
|
|
accumulated_flat_is_ratio .append(chunk_flat_is_ratio) |
|
|
grad_inputs_j[:] = chunk_grad_input |
|
|
pass |
|
|
|
|
|
accumulate_chunk = torch.compile( |
|
|
accumulate_chunk, |
|
|
fullgraph = True, |
|
|
|
|
|
dynamic = True, |
|
|
options = torch_compile_options, |
|
|
) |
|
|
|
|
|
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0) |
|
|
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0) |
|
|
if _old_hidden_states is not None: |
|
|
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0) |
|
|
else: |
|
|
old_hidden_states = [None] * n_chunks |
|
|
if _ref_hidden_states is not None: |
|
|
ref_hidden_states = torch.chunk(_ref_hidden_states, chunks = n_chunks, dim = 0) |
|
|
else: |
|
|
ref_hidden_states = [None] * n_chunks |
|
|
if _sampling_per_token_logps is not None: |
|
|
sampling_per_token_logps = torch.chunk(_sampling_per_token_logps, chunks = n_chunks, dim = 0) |
|
|
else: |
|
|
sampling_per_token_logps = [None] * n_chunks |
|
|
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0) |
|
|
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0) |
|
|
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0) |
|
|
|
|
|
|
|
|
scaling = scaler.get_scale() if scaler is not None else 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, sampling_per_token_logps_j, input_ids_j, mask_j, advantages_j, ) in \ |
|
|
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, ref_hidden_states, sampling_per_token_logps, input_ids, mask, advantages): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accumulate_chunk( |
|
|
new_hidden_states_j, |
|
|
old_hidden_states_j, |
|
|
ref_hidden_states_j, |
|
|
sampling_per_token_logps_j, |
|
|
input_ids_j, |
|
|
mask_j, |
|
|
advantages_j, |
|
|
scaling, |
|
|
grad_inputs_j, |
|
|
) |
|
|
pass |
|
|
|
|
|
grad_inputs .div_(n_chunks) |
|
|
accumulated_loss .div_(n_chunks) |
|
|
accumulated_completion_length.div_(n_chunks) |
|
|
accumulated_mean_kl .div_(n_chunks) |
|
|
|
|
|
if _sampling_per_token_logps is not None: |
|
|
accumulated_delta = torch.cat(accumulated_delta, dim=0) |
|
|
accumulated_flat_is_ratio = torch.cat(accumulated_flat_is_ratio, dim=0) |
|
|
else: |
|
|
accumulated_delta = None |
|
|
accumulated_flat_is_ratio = None |
|
|
ctx.save_for_backward(grad_inputs) |
|
|
return ( |
|
|
accumulated_loss, |
|
|
accumulated_completion_length, |
|
|
accumulated_mean_kl, |
|
|
accumulated_delta, |
|
|
accumulated_flat_is_ratio |
|
|
) |
|
|
pass |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, grad_output, dcompletion_length, dmean_kl, ddelta, ddflat_is_ratio): |
|
|
(grad_input,) = ctx.saved_tensors |
|
|
return (grad_input, None, None, None, None, None, None, None, None, None, None, None) |
|
|
pass |
|
|
|
|
|
def grpo_accumulated_loss( |
|
|
trainer, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
completion_mask, |
|
|
advantages, |
|
|
old_hidden_states, |
|
|
ref_hidden_states, |
|
|
n_chunks = -1, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
bsz, qlen = input_ids.shape |
|
|
|
|
|
pixel_values = kwargs.get('pixel_values',None) |
|
|
image_grid_thw = kwargs.get('image_grid_thw',None) |
|
|
pixel_attention_mask = kwargs.get('pixel_attention_mask',None) |
|
|
image_sizes = kwargs.get('image_sizes',None) |
|
|
sampling_per_token_logps = kwargs.get("sampling_per_token_logps", None) |
|
|
|
|
|
del kwargs["sampling_per_token_logps"] |
|
|
kwargs["vllm_importance_sampling_cap"] = trainer.vllm_importance_sampling_cap if sampling_per_token_logps is not None else None |
|
|
kwargs["use_vllm"] = trainer.use_vllm |
|
|
|
|
|
factors = [i for i in range(1, bsz + 1) if bsz % i == 0] |
|
|
if n_chunks == -1: n_chunks = bsz |
|
|
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)] |
|
|
|
|
|
if not hasattr(trainer, '_autocast_dtype'): |
|
|
trainer._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 |
|
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': trainer._autocast_dtype = None |
|
|
pass |
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" |
|
|
|
|
|
lm_head = trainer.model.get_output_embeddings().weight |
|
|
|
|
|
if pixel_values is None: |
|
|
left_pad_tokens_per_prompt = calculate_pad_tokens_in_prompt(input_ids, logits_to_keep, trainer.processing_class.pad_token_id) |
|
|
|
|
|
max_left_pad = max(left_pad_tokens_per_prompt).item() |
|
|
|
|
|
input_ids = left_pack_padding(input_ids, trainer.processing_class.pad_token_id) |
|
|
|
|
|
completion_input_ids = input_ids[:, -(logits_to_keep +max_left_pad):] |
|
|
|
|
|
completion_mask = create_completion_attention_mask(completion_input_ids, left_pad_tokens_per_prompt, max_left_pad, trainer.processing_class.pad_token_id).to(attention_mask.dtype) |
|
|
|
|
|
|
|
|
if trainer.use_vllm and sampling_per_token_logps is not None: |
|
|
sampling_per_token_logps = align_logprobs_with_mask(sampling_per_token_logps, completion_mask) |
|
|
attention_mask = input_ids != trainer.processing_class.pad_token_id |
|
|
attention_mask = attention_mask.to(attention_mask.dtype) |
|
|
else: |
|
|
completion_input_ids = input_ids[:, -logits_to_keep:] |
|
|
|
|
|
unwrapped_model = trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False) |
|
|
|
|
|
|
|
|
for module in unwrapped_model.modules(): |
|
|
if hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "io_same_decice"): |
|
|
module._hf_hook.io_same_decice = False |
|
|
pass |
|
|
|
|
|
if trainer._autocast_dtype is None: |
|
|
autocaster = nullcontext() |
|
|
else: |
|
|
autocaster = torch.amp.autocast(device_type = trainer.model.device.type, dtype = trainer._autocast_dtype) |
|
|
with autocaster: |
|
|
if pixel_values is None: |
|
|
new_hidden_states = unwrapped_model( |
|
|
input_ids = input_ids, |
|
|
attention_mask = attention_mask, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
pixel_attention_mask = pixel_attention_mask, |
|
|
image_sizes = image_sizes, |
|
|
|
|
|
).logits |
|
|
|
|
|
|
|
|
new_hidden_states = new_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :] |
|
|
if ref_hidden_states is not None: |
|
|
ref_hidden_states = ref_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :] |
|
|
if old_hidden_states is not None: |
|
|
old_hidden_states = old_hidden_states[:, -(logits_to_keep +max_left_pad+1): , :] |
|
|
else: |
|
|
new_hidden_states = unwrapped_model( |
|
|
input_ids = input_ids, |
|
|
attention_mask = attention_mask, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
pixel_attention_mask = pixel_attention_mask, |
|
|
image_sizes = image_sizes, |
|
|
logits_to_keep = logits_to_keep + 1, |
|
|
).logits |
|
|
loss, completion_length, mean_kl, delta, flat_is_ratio = UnslothEfficientGRPO.apply( |
|
|
new_hidden_states, |
|
|
old_hidden_states, |
|
|
ref_hidden_states, |
|
|
sampling_per_token_logps, |
|
|
lm_head, |
|
|
completion_input_ids, |
|
|
completion_mask, |
|
|
advantages, |
|
|
trainer.beta, |
|
|
trainer.accelerator.scaler, |
|
|
n_chunks, |
|
|
kwargs |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0" |
|
|
|
|
|
return loss, completion_length, mean_kl, delta, flat_is_ratio |
|
|
|
|
|
new_logits = torch.matmul(new_hidden_states, lm_head.t()) |
|
|
new_logits = new_logits[:, :-1, :] |
|
|
old_logits = torch.matmul(old_hidden_states, lm_head.t()) |
|
|
old_logits = old_logits[:, :-1, :] |
|
|
loss, completion_length, mean_kl = grpo_compute_loss( |
|
|
old_logits, |
|
|
new_logits, |
|
|
completion_input_ids, |
|
|
completion_mask, |
|
|
trainer.beta, |
|
|
advantages, |
|
|
) |
|
|
return loss, completion_length, mean_kl |
|
|
pass |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options) |
|
|
def grpo_compute_loss_slow( |
|
|
ref_logits, |
|
|
new_logits, |
|
|
old_logits, |
|
|
sampling_per_token_logps, |
|
|
input_ids, |
|
|
mask, |
|
|
beta, |
|
|
advantages, |
|
|
**kwargs |
|
|
): |
|
|
|
|
|
|
|
|
loss_type = kwargs.get("loss_type", "grpo") |
|
|
epsilon_low = kwargs.get("epsilon_low", 0.2) |
|
|
epsilon_high = kwargs.get("epsilon_high", 0.2) |
|
|
max_completion_length = kwargs.get("max_completion_length", 8192) |
|
|
delta = kwargs.get("delta", None) |
|
|
temperature = kwargs.get("temperature", 1.0) |
|
|
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0) |
|
|
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0) |
|
|
logit_softcapping = kwargs.get("logit_softcapping", 0.0) |
|
|
importance_sampling_level = kwargs.get("importance_sampling_level", "token") |
|
|
num_items_in_batch = kwargs.get("num_items_in_batch", None) |
|
|
current_gradient_accumulation_steps = kwargs.get("current_gradient_accumulation_steps", 1) |
|
|
num_processes = kwargs.get("num_processes", 1) |
|
|
use_vllm = kwargs.get("use_vllm", False) |
|
|
vllm_importance_sampling_cap = kwargs.get("vllm_importance_sampling_cap", 2.0) |
|
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
|
|
|
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping) |
|
|
|
|
|
new_logits = new_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: new_logits = new_logits / temperature |
|
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
with torch.no_grad(): |
|
|
if beta != 0.0: |
|
|
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0" |
|
|
|
|
|
|
|
|
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping) |
|
|
|
|
|
ref_logits = ref_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: ref_logits = ref_logits / temperature |
|
|
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
ref = ref_x - torch.logsumexp(ref_logits, dim = -1) |
|
|
pass |
|
|
|
|
|
if old_logits is not None: |
|
|
|
|
|
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply |
|
|
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide |
|
|
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping) |
|
|
|
|
|
old_logits = old_logits.to(torch.float32) |
|
|
|
|
|
if temperature != 1.0: old_logits = old_logits / temperature |
|
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
|
pass |
|
|
if use_vllm and sampling_per_token_logps is not None: |
|
|
|
|
|
importance_sampling_ratio = torch.exp((old * mask) - sampling_per_token_logps) |
|
|
importance_sampling_ratio = torch.clamp( |
|
|
importance_sampling_ratio, max=vllm_importance_sampling_cap |
|
|
) |
|
|
pass |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
if beta != 0.0: |
|
|
kl_i = torch.exp(ref - new) - (ref - new) - 1.0 |
|
|
|
|
|
else: |
|
|
|
|
|
if importance_sampling_level == "sequence": |
|
|
kl_i = new.new_zeros(new.size(0), 1) |
|
|
else: |
|
|
kl_i = torch.zeros_like(new) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if old_logits is not None: |
|
|
log_ratio = new - old |
|
|
else: |
|
|
log_ratio = new - new.detach() |
|
|
|
|
|
if importance_sampling_level == "token": |
|
|
log_importance_weights = log_ratio |
|
|
elif importance_sampling_level == "sequence": |
|
|
log_importance_weights = (log_ratio * mask).sum(-1) / mask.sum(-1).clamp(min=1.0) |
|
|
log_importance_weights = log_importance_weights.unsqueeze(-1) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unknown importance sampling level: {importance_sampling_level}. Possible values are 'token' " |
|
|
"and 'sequence'." |
|
|
) |
|
|
|
|
|
coef_1 = torch.exp(log_importance_weights) |
|
|
|
|
|
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high) |
|
|
|
|
|
if delta is not None: |
|
|
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1) |
|
|
else: |
|
|
loss_1 = coef_1 * advantages.unsqueeze(1) |
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_2 = coef_2 * advantages.unsqueeze(1) |
|
|
loss_i = -torch.min(loss_1, loss_2) |
|
|
|
|
|
if use_vllm and sampling_per_token_logps is not None: |
|
|
loss_i = loss_i * importance_sampling_ratio |
|
|
|
|
|
with torch.no_grad(): |
|
|
delta = torch.abs(old - sampling_per_token_logps) |
|
|
delta = delta * mask |
|
|
flat_is_ratio = importance_sampling_ratio * mask |
|
|
else: |
|
|
delta = torch.tensor([]).detach() |
|
|
flat_is_ratio = torch.tensor([]).detach() |
|
|
if beta != 0.0: |
|
|
loss_i = loss_i + beta * kl_i |
|
|
|
|
|
mask = mask.to(torch.float32) |
|
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
|
|
|
if loss_type == "grpo": |
|
|
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean() |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "bnpo": |
|
|
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0) |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "dr_grpo": |
|
|
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length) |
|
|
loss = loss / current_gradient_accumulation_steps |
|
|
elif loss_type == "dapo": |
|
|
normalizer = num_items_in_batch/ num_processes |
|
|
loss = (loss_i * mask).sum() / normalizer |
|
|
else: |
|
|
raise ValueError(f"Unknown loss type: {loss_type}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def masked_batch_mean(x): |
|
|
with torch.inference_mode(): |
|
|
completion_length = n_mask_per_reward.mean() |
|
|
if x.shape[1] == 1: |
|
|
return completion_length, x.mean() |
|
|
else: |
|
|
mean_kl_per_reward = (x * mask).sum(1) / n_mask_per_reward |
|
|
mean_kl = mean_kl_per_reward.mean() |
|
|
return completion_length, mean_kl |
|
|
completion_length, mean_kl = masked_batch_mean(kl_i) |
|
|
return loss, completion_length, mean_kl, delta, flat_is_ratio |
|
|
|
|
|
def grpo_update_SamplingParams(SamplingParams, generation_kwargs, vllm_sampling_params = None): |
|
|
good_sampling_params_keys = inspect.signature(SamplingParams).parameters.keys() |
|
|
if vllm_sampling_params is not None: |
|
|
for key in good_sampling_params_keys: |
|
|
if hasattr(vllm_sampling_params, key): |
|
|
overwrited_key = getattr(vllm_sampling_params, key) |
|
|
if overwrited_key is not None and (type(overwrited_key) in (list, tuple,) and len(overwrited_key) != 0): |
|
|
generation_kwargs[key] = overwrited_key |
|
|
return generation_kwargs |
|
|
|
|
|
def vLLMSamplingParams(**kwargs): |
|
|
from vllm import SamplingParams |
|
|
|
|
|
sampling_params = SamplingParams(**kwargs) |
|
|
sampling_params._set_kwargs = kwargs |
|
|
return sampling_params |
|
|
@dataclass |
|
|
class UnslothGRPOConfig(GRPOConfig): |
|
|
""" |
|
|
|
|
|
Configuration class for the [`GRPOTrainer`]. |
|
|
|
|
|
This class includes only the parameters that are specific to GRPO training. For a full list of training arguments, |
|
|
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may |
|
|
differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
|
command line. |
|
|
|
|
|
Parameters: |
|
|
> Parameters that control the model and reference model |
|
|
|
|
|
model_init_kwargs (`str`, `dict[str, Any]`, *optional*): |
|
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
|
argument of the [`GRPOTrainer`] is provided as a string. |
|
|
disable_dropout (`bool`, *optional*, defaults to `False`): |
|
|
Whether to disable dropout in the model. This is useful for training with a reference model, as it prevents |
|
|
the model from generating different logprobs for the same input. |
|
|
|
|
|
> Parameters that control the data preprocessing |
|
|
|
|
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
|
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that |
|
|
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`. |
|
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
|
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left. |
|
|
num_generations (`int` or `None`, *optional*, defaults to `8`): |
|
|
Number of generations per prompt to sample. The effective batch size (num_processes * per_device_batch_size |
|
|
* gradient_accumulation_steps) must be evenly divisible by this value. |
|
|
max_completion_length (`int` or `None`, *optional*, defaults to `256`): |
|
|
Maximum length of the generated completion. |
|
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
|
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible |
|
|
with vLLM generation. |
|
|
shuffle_dataset (`bool`, *optional*, defaults to `True`): |
|
|
Whether to shuffle the training dataset. |
|
|
|
|
|
> Parameters that control generation |
|
|
|
|
|
generation_batch_size: (`int`, *optional*): |
|
|
Batch size to use for generation. If `None`, it defaults to the effective training batch size: |
|
|
`per_device_train_batch_size * num_processes * steps_per_generation`. In other words, there is one |
|
|
generation batch processed per optimization step. Mutually exclusive with `steps_per_generation`. |
|
|
steps_per_generation: (`int`, *optional*): |
|
|
Number of steps per generation. If `None`, it defaults to `gradient_accumulation_steps`. Mutually exclusive |
|
|
with `generation_batch_size`. |
|
|
temperature (`float`, defaults to `1.0`): |
|
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
|
top_p (`float`, *optional*, defaults to `1.0`): |
|
|
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to |
|
|
`1.0` to consider all tokens. |
|
|
top_k (`int`, *optional*): |
|
|
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is |
|
|
disabled and all tokens are considered. |
|
|
min_p (`float`, *optional*): |
|
|
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a |
|
|
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range. |
|
|
repetition_penalty (`float`, *optional*, defaults to `1.0`): |
|
|
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. |
|
|
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat |
|
|
tokens. |
|
|
use_transformers_paged (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers` |
|
|
paged implementation will be used for generation instead of the default padded implementation. This |
|
|
parameter is only effective when `use_vllm` is set to `False`. |
|
|
cache_implementation (`str`, *optional*): |
|
|
Implementation of the cache method for faster generation when `use_vllm` is set to `False`. |
|
|
generation_kwargs (`dict[str, Any]`, *optional*): |
|
|
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or |
|
|
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the |
|
|
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict |
|
|
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them. |
|
|
|
|
|
> Parameters that control generation acceleration powered by vLLM |
|
|
|
|
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation |
|
|
instead of the default model.generate(). Requires `vllm` to be installed. |
|
|
vllm_mode (`str`, *optional*, defaults to `"server"`): |
|
|
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or |
|
|
`"colocate"`. |
|
|
|
|
|
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM |
|
|
server is running (start with `trl vllm-serve`). |
|
|
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a |
|
|
separate server but may cause resource contention with training. |
|
|
vllm_model_impl (`str`, *optional*, defaults to `"vllm"`): |
|
|
Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use |
|
|
the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model |
|
|
implementation. |
|
|
vllm_guided_decoding_regex (`str`, *optional*): |
|
|
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled. |
|
|
|
|
|
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`) |
|
|
|
|
|
vllm_server_base_url (`str`, *optional*): |
|
|
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and |
|
|
`vllm_server_port` are ignored. |
|
|
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`): |
|
|
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_port (`int`, *optional*, defaults to `8000`): |
|
|
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_timeout (`float`, *optional*, defaults to `240.0`): |
|
|
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the |
|
|
timeout, a `ConnectionError` is raised. |
|
|
|
|
|
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`) |
|
|
|
|
|
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.3`): |
|
|
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag. |
|
|
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`): |
|
|
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_tensor_parallel_size` flag. |
|
|
vllm_enable_sleep_mode (`bool`, *optional*, defaults to `False`): |
|
|
Whether to enable sleep mode for vLLM. If `True`, vLLM will sleep during the optimization step and woken |
|
|
for weight sync and generation. |
|
|
|
|
|
> Parameters that control the training |
|
|
|
|
|
beta (`float`, *optional*, defaults to `0.0`): |
|
|
KL coefficient. If `0.0` (default), the reference model is not loaded, reducing memory usage and improving |
|
|
training speed. |
|
|
num_iterations (`int`, *optional*, defaults to `1`): |
|
|
Number of iterations per batch (denoted as μ in the algorithm). |
|
|
epsilon (`float`, *optional*, defaults to `0.2`): |
|
|
Epsilon value for clipping. |
|
|
delta (`float`, *optional*): |
|
|
Enables the upper clipping bound in two-sided GRPO loss when set to a float. If `None` (default), standard |
|
|
GRPO clipping is used. Recommended to be greater than `1 + ε` when enabled. This method is introduced in |
|
|
the [INTELLECT-2 tech report](https://huggingface.co/papers/2505.07291). |
|
|
epsilon_high (`float`, *optional*): |
|
|
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound |
|
|
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`. |
|
|
importance_sampling_level (`str`, *optional*, defaults to `"token"`): |
|
|
Controls whether importance sampling ratios are computed at the `"token"` or `"sequence"` level. `"token"` |
|
|
keeps the raw per-token log-probability ratios (one weight per token). `"sequence"` averages the |
|
|
log-probability ratios across valid tokens to produce a single ratio per sequence. The [GSPO |
|
|
paper](https://huggingface.co/papers/2507.18071) shows that sequence-level sampling often yields more |
|
|
stable training and better alignment with sequence-level rewards. |
|
|
reward_weights (`list[float]`, *optional*): |
|
|
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are |
|
|
weighted equally with weight `1.0`. |
|
|
scale_rewards (`str` or `bool`, *optional*, defaults to `"group"`): |
|
|
Specifies the scaling strategy for rewards. Supported values are: |
|
|
|
|
|
- `True` or `"group"` (default): rewards are scaled by the standard deviation within each group, ensuring |
|
|
unit variance within a group. |
|
|
- `"batch"`: rewards are scaled by the standard deviation across the entire batch, as recommended in the |
|
|
[PPO Lite paper](https://huggingface.co/papers/2508.08221). |
|
|
- `False` or `"none"`: no scaling is applied. The [Dr. GRPO |
|
|
paper](https://huggingface.co/papers/2503.20783) recommends not scaling rewards, as scaling by the |
|
|
standard deviation introduces a question-level difficulty bias. |
|
|
loss_type (`str`, *optional*, defaults to `"dapo"`): |
|
|
Specifies the loss formulation to use. Supported values are: |
|
|
|
|
|
- `"grpo"`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to |
|
|
length bias—this approach tends to prefer shorter completions with positive advantages and longer ones |
|
|
with negative advantages. |
|
|
- `"dr_grpo"`: Aggregates token-level losses by normalizing with a global constant. This method was |
|
|
introduced in the [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) to eliminate length bias. |
|
|
The value of the constant corresponds to `max_completion_length`. |
|
|
- `"dapo"` (default): Aggregates token-level losses by normalizing with the number of active token in the |
|
|
global accumulated batch. This method was introduced in the [DAPO |
|
|
paper](https://huggingface.co/papers/2503.14476) to eliminate length bias. |
|
|
- `"bnpo"`: Aggregates token-level losses by normalizing with the number of active token in the local |
|
|
batch. Note that normalization is performed over the local batch only, so results may slightly vary |
|
|
depending on the local batch size, despite a constant effective batch size. When using |
|
|
`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss. |
|
|
mask_truncated_completions (`bool`, *optional*, defaults to `False`): |
|
|
When enabled, truncated completions are excluded from the loss calculation, preventing them from being |
|
|
incorrectly penalized and introducing noise during training. According to the |
|
|
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability. |
|
|
sync_ref_model (`bool`, *optional*, defaults to `False`): |
|
|
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using |
|
|
the `ref_model_mixup_alpha` parameter. This synchronization originates from the |
|
|
[TR-DPO](https://huggingface.co/papers/2404.09656) paper. |
|
|
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`): |
|
|
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix |
|
|
between the current policy and the previous reference policy during updates. The reference policy is |
|
|
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you |
|
|
must set `sync_ref_model=True`. |
|
|
ref_model_sync_steps (`int`, *optional*, defaults to `512`): |
|
|
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how |
|
|
frequently the current policy is synchronized with the reference policy. To use this parameter, you must |
|
|
set `sync_ref_model=True`. |
|
|
top_entropy_quantile (`float`, *optional*, defaults to `1.0`): |
|
|
ρ parameter from [Beyond the 80/20 Rule](https://huggingface.co/papers/2506.01939). Keeps in the policy |
|
|
loss term only the top-ρ quantile of tokens by entropy of the probability distribution at each sequence |
|
|
position, improving results. Range: `[0.0-1.0]`. A value of `0.0` masks all but the highest entropy token; |
|
|
`1.0` keeps all tokens. The paper recommends a value of `0.2`. If used with |
|
|
`mask_truncated_completions=True`, only tokens from non-truncated completions are considered. |
|
|
use_liger_loss (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use the Liger GRPO loss. |
|
|
vllm_importance_sampling_correction (`bool`, *optional*, defaults to `True`): |
|
|
Whether to apply Truncated Importance Sampling (TIS) between vLLM completion logprobs and recomputed |
|
|
logprobs. [Your Efficient RL Framework Secretly Brings You Off-Policy RL |
|
|
Training](https://fengyao.notion.site/off-policy-rl) highlights that using a separate generation framework |
|
|
(such as vLLM) can introduce off-policy effects due to subtle implementation differences between generation |
|
|
and training backends. TIS is proposed as a remedy for this issue. |
|
|
vllm_importance_sampling_cap (`float`, *optional*, defaults to `2.0`): |
|
|
Truncation parameter C for Truncated Importance Sampling (TIS). This sets an upper bound on the importance |
|
|
sampling ratio, improving training stability. |
|
|
|
|
|
> Parameters that control the logging |
|
|
|
|
|
log_completions (`bool`, *optional*, defaults to `False`): |
|
|
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is installed, |
|
|
it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`. |
|
|
num_completions_to_print (`int`, *optional*): |
|
|
Number of completions to print with `rich`. If `None`, all completions are logged. |
|
|
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`): |
|
|
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all prompts |
|
|
are logged. |
|
|
|
|
|
""" |
|
|
vllm_sampling_params: Optional[Any] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
|
) |
|
|
unsloth_num_chunks : Optional[int] = field( |
|
|
default = -1, |
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
|
) |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
output_dir = None, |
|
|
overwrite_output_dir = None, |
|
|
do_train = False, |
|
|
do_eval = False, |
|
|
do_predict = False, |
|
|
eval_strategy = 'no', |
|
|
prediction_loss_only = False, |
|
|
per_device_train_batch_size = 4, |
|
|
per_device_eval_batch_size = 4, |
|
|
per_gpu_train_batch_size = None, |
|
|
per_gpu_eval_batch_size = None, |
|
|
gradient_accumulation_steps = 2, |
|
|
eval_accumulation_steps = 2, |
|
|
eval_delay = 0, |
|
|
torch_empty_cache_steps = 250, |
|
|
learning_rate = 5e-05, |
|
|
weight_decay = 0.01, |
|
|
adam_beta1 = 0.9, |
|
|
adam_beta2 = 0.999, |
|
|
adam_epsilon = 1e-08, |
|
|
max_grad_norm = 1.0, |
|
|
num_train_epochs = 3.0, |
|
|
max_steps = -1, |
|
|
lr_scheduler_type = 'linear', |
|
|
warmup_ratio = 0.1, |
|
|
warmup_steps = 0, |
|
|
log_level = 'passive', |
|
|
log_level_replica = 'warning', |
|
|
log_on_each_node = True, |
|
|
logging_dir = None, |
|
|
logging_strategy = 'steps', |
|
|
logging_first_step = False, |
|
|
logging_steps = 1, |
|
|
logging_nan_inf_filter = False, |
|
|
save_strategy = 'steps', |
|
|
save_steps = 500, |
|
|
save_total_limit = None, |
|
|
save_safetensors = True, |
|
|
save_on_each_node = False, |
|
|
save_only_model = False, |
|
|
restore_callback_states_from_checkpoint = False, |
|
|
no_cuda = False, |
|
|
use_cpu = False, |
|
|
use_mps_device = False, |
|
|
seed = 3407, |
|
|
data_seed = 3407, |
|
|
jit_mode_eval = False, |
|
|
bf16 = False, |
|
|
fp16 = False, |
|
|
fp16_opt_level = 'O1', |
|
|
half_precision_backend = 'auto', |
|
|
bf16_full_eval = False, |
|
|
fp16_full_eval = False, |
|
|
tf32 = None, |
|
|
local_rank = -1, |
|
|
ddp_backend = None, |
|
|
tpu_num_cores = None, |
|
|
tpu_metrics_debug = False, |
|
|
debug = '', |
|
|
dataloader_drop_last = False, |
|
|
eval_steps = None, |
|
|
dataloader_num_workers = 0, |
|
|
dataloader_prefetch_factor = None, |
|
|
past_index = -1, |
|
|
run_name = None, |
|
|
disable_tqdm = None, |
|
|
remove_unused_columns = False, |
|
|
label_names = None, |
|
|
load_best_model_at_end = False, |
|
|
metric_for_best_model = None, |
|
|
greater_is_better = None, |
|
|
ignore_data_skip = False, |
|
|
fsdp = None, |
|
|
fsdp_min_num_params = 0, |
|
|
fsdp_config = None, |
|
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
|
accelerator_config = None, |
|
|
parallelism_config = None, |
|
|
deepspeed = None, |
|
|
label_smoothing_factor = 0.0, |
|
|
optim = 'adamw_8bit', |
|
|
optim_args = None, |
|
|
adafactor = False, |
|
|
group_by_length = False, |
|
|
length_column_name = 'length', |
|
|
report_to = None, |
|
|
project = 'huggingface', |
|
|
trackio_space_id = 'trackio', |
|
|
ddp_find_unused_parameters = None, |
|
|
ddp_bucket_cap_mb = None, |
|
|
ddp_broadcast_buffers = None, |
|
|
dataloader_pin_memory = True, |
|
|
dataloader_persistent_workers = False, |
|
|
skip_memory_metrics = True, |
|
|
use_legacy_prediction_loop = False, |
|
|
push_to_hub = False, |
|
|
resume_from_checkpoint = None, |
|
|
hub_model_id = None, |
|
|
hub_strategy = 'every_save', |
|
|
hub_token = None, |
|
|
hub_private_repo = None, |
|
|
hub_always_push = False, |
|
|
hub_revision = None, |
|
|
gradient_checkpointing = True, |
|
|
gradient_checkpointing_kwargs = None, |
|
|
include_inputs_for_metrics = False, |
|
|
eval_do_concat_batches = True, |
|
|
fp16_backend = 'auto', |
|
|
push_to_hub_model_id = None, |
|
|
push_to_hub_organization = None, |
|
|
push_to_hub_token = None, |
|
|
mp_parameters = '', |
|
|
auto_find_batch_size = False, |
|
|
full_determinism = False, |
|
|
torchdynamo = None, |
|
|
ray_scope = 'last', |
|
|
ddp_timeout = 1800, |
|
|
torch_compile = False, |
|
|
torch_compile_backend = None, |
|
|
torch_compile_mode = None, |
|
|
include_tokens_per_second = False, |
|
|
include_num_input_tokens_seen = False, |
|
|
neftune_noise_alpha = None, |
|
|
optim_target_modules = None, |
|
|
batch_eval_metrics = False, |
|
|
eval_on_start = False, |
|
|
use_liger_kernel = False, |
|
|
liger_kernel_config = None, |
|
|
eval_use_gather_object = False, |
|
|
average_tokens_across_devices = True, |
|
|
model_init_kwargs = None, |
|
|
disable_dropout = False, |
|
|
max_prompt_length = 512, |
|
|
num_generations = 8, |
|
|
max_completion_length = 256, |
|
|
ds3_gather_for_generation = True, |
|
|
shuffle_dataset = True, |
|
|
generation_batch_size = None, |
|
|
steps_per_generation = None, |
|
|
temperature = 1.0, |
|
|
top_p = 1.0, |
|
|
top_k = None, |
|
|
min_p = None, |
|
|
generation_kwargs = {}, |
|
|
repetition_penalty = 1.0, |
|
|
use_transformers_paged = False, |
|
|
cache_implementation = None, |
|
|
use_vllm = False, |
|
|
vllm_mode = 'colocate', |
|
|
vllm_model_impl = 'vllm', |
|
|
vllm_enable_sleep_mode = False, |
|
|
vllm_guided_decoding_regex = None, |
|
|
vllm_server_base_url = None, |
|
|
vllm_server_host = '0.0.0.0', |
|
|
vllm_server_port = 8000, |
|
|
vllm_server_timeout = 240.0, |
|
|
vllm_gpu_memory_utilization = 0.3, |
|
|
vllm_tensor_parallel_size = 1, |
|
|
beta = 0.001, |
|
|
num_iterations = 1, |
|
|
epsilon = 0.2, |
|
|
delta = None, |
|
|
epsilon_high = None, |
|
|
importance_sampling_level = 'token', |
|
|
reward_weights = None, |
|
|
scale_rewards = 'group', |
|
|
loss_type = 'bnpo', |
|
|
mask_truncated_completions = False, |
|
|
sync_ref_model = False, |
|
|
ref_model_mixup_alpha = 0.6, |
|
|
ref_model_sync_steps = 512, |
|
|
top_entropy_quantile = 1.0, |
|
|
use_liger_loss = False, |
|
|
vllm_importance_sampling_correction = False, |
|
|
vllm_importance_sampling_cap = 2.0, |
|
|
log_completions = False, |
|
|
num_completions_to_print = None, |
|
|
wandb_log_unique_prompts = False, |
|
|
vllm_sampling_params = None, |
|
|
unsloth_num_chunks = -1, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
|
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
|
output_dir = 'unsloth_training_checkpoints' |
|
|
save_strategy = 'no' |
|
|
if loss_type.lower() == 'dr_grpo': |
|
|
loss_type = 'dr_grpo' |
|
|
elif loss_type.lower() == 'dapo': |
|
|
loss_type = 'dapo' |
|
|
if loss_type.lower() == 'dr_grpo': |
|
|
if scale_rewards == None: |
|
|
scale_rewards = True |
|
|
elif scale_rewards == True: |
|
|
print('Unsloth: The Dr GRPO paper recommends setting `scale_rewards` to False! Will override. Set it to `None` to force False.') |
|
|
scale_rewards = False |
|
|
elif loss_type.lower() == 'dapo': |
|
|
if mask_truncated_completions != True: |
|
|
print('Unsloth: The DAPO paper recommends `mask_truncated_completions = True` - we will set it.') |
|
|
if epsilon_high != 0.28: |
|
|
print('Unsloth: The DAPO paper recommends `epsilon_high = 0.28` - we will set it.') |
|
|
if beta != 0.0: |
|
|
print('Unsloth: The DAPO paper recommends setting `beta = 0.0` to remove the KL term - we will set it.') |
|
|
mask_truncated_completions = True |
|
|
epsilon_high = 0.28 |
|
|
beta = 0.0 |
|
|
|
|
|
if (per_device_train_batch_size // num_generations) * num_generations != per_device_train_batch_size: |
|
|
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations)) |
|
|
per_device_train_batch_size = num_generations |
|
|
|
|
|
if temperature <= 0: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') |
|
|
elif temperature >= 10: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
output_dir = output_dir, |
|
|
overwrite_output_dir = overwrite_output_dir, |
|
|
do_train = do_train, |
|
|
do_eval = do_eval, |
|
|
do_predict = do_predict, |
|
|
eval_strategy = eval_strategy, |
|
|
prediction_loss_only = prediction_loss_only, |
|
|
per_device_train_batch_size = per_device_train_batch_size, |
|
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
|
eval_accumulation_steps = eval_accumulation_steps, |
|
|
eval_delay = eval_delay, |
|
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
|
learning_rate = learning_rate, |
|
|
weight_decay = weight_decay, |
|
|
adam_beta1 = adam_beta1, |
|
|
adam_beta2 = adam_beta2, |
|
|
adam_epsilon = adam_epsilon, |
|
|
max_grad_norm = max_grad_norm, |
|
|
num_train_epochs = num_train_epochs, |
|
|
max_steps = max_steps, |
|
|
lr_scheduler_type = lr_scheduler_type, |
|
|
warmup_ratio = warmup_ratio, |
|
|
warmup_steps = warmup_steps, |
|
|
log_level = log_level, |
|
|
log_level_replica = log_level_replica, |
|
|
log_on_each_node = log_on_each_node, |
|
|
logging_dir = logging_dir, |
|
|
logging_strategy = logging_strategy, |
|
|
logging_first_step = logging_first_step, |
|
|
logging_steps = logging_steps, |
|
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
|
save_strategy = save_strategy, |
|
|
save_steps = save_steps, |
|
|
save_total_limit = save_total_limit, |
|
|
save_safetensors = save_safetensors, |
|
|
save_on_each_node = save_on_each_node, |
|
|
save_only_model = save_only_model, |
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
|
no_cuda = no_cuda, |
|
|
use_cpu = use_cpu, |
|
|
use_mps_device = use_mps_device, |
|
|
seed = seed, |
|
|
data_seed = data_seed, |
|
|
jit_mode_eval = jit_mode_eval, |
|
|
bf16 = bf16, |
|
|
fp16 = fp16, |
|
|
fp16_opt_level = fp16_opt_level, |
|
|
half_precision_backend = half_precision_backend, |
|
|
bf16_full_eval = bf16_full_eval, |
|
|
fp16_full_eval = fp16_full_eval, |
|
|
tf32 = tf32, |
|
|
local_rank = local_rank, |
|
|
ddp_backend = ddp_backend, |
|
|
tpu_num_cores = tpu_num_cores, |
|
|
tpu_metrics_debug = tpu_metrics_debug, |
|
|
debug = debug, |
|
|
dataloader_drop_last = dataloader_drop_last, |
|
|
eval_steps = eval_steps, |
|
|
dataloader_num_workers = dataloader_num_workers, |
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
|
past_index = past_index, |
|
|
run_name = run_name, |
|
|
disable_tqdm = disable_tqdm, |
|
|
remove_unused_columns = remove_unused_columns, |
|
|
label_names = label_names, |
|
|
load_best_model_at_end = load_best_model_at_end, |
|
|
metric_for_best_model = metric_for_best_model, |
|
|
greater_is_better = greater_is_better, |
|
|
ignore_data_skip = ignore_data_skip, |
|
|
fsdp = fsdp, |
|
|
fsdp_min_num_params = fsdp_min_num_params, |
|
|
fsdp_config = fsdp_config, |
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
|
accelerator_config = accelerator_config, |
|
|
parallelism_config = parallelism_config, |
|
|
deepspeed = deepspeed, |
|
|
label_smoothing_factor = label_smoothing_factor, |
|
|
optim = optim, |
|
|
optim_args = optim_args, |
|
|
adafactor = adafactor, |
|
|
group_by_length = group_by_length, |
|
|
length_column_name = length_column_name, |
|
|
report_to = report_to, |
|
|
project = project, |
|
|
trackio_space_id = trackio_space_id, |
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
|
dataloader_pin_memory = dataloader_pin_memory, |
|
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
|
skip_memory_metrics = skip_memory_metrics, |
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
|
push_to_hub = push_to_hub, |
|
|
resume_from_checkpoint = resume_from_checkpoint, |
|
|
hub_model_id = hub_model_id, |
|
|
hub_strategy = hub_strategy, |
|
|
hub_token = hub_token, |
|
|
hub_private_repo = hub_private_repo, |
|
|
hub_always_push = hub_always_push, |
|
|
hub_revision = hub_revision, |
|
|
gradient_checkpointing = gradient_checkpointing, |
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
|
eval_do_concat_batches = eval_do_concat_batches, |
|
|
fp16_backend = fp16_backend, |
|
|
push_to_hub_model_id = push_to_hub_model_id, |
|
|
push_to_hub_organization = push_to_hub_organization, |
|
|
push_to_hub_token = push_to_hub_token, |
|
|
mp_parameters = mp_parameters, |
|
|
auto_find_batch_size = auto_find_batch_size, |
|
|
full_determinism = full_determinism, |
|
|
torchdynamo = torchdynamo, |
|
|
ray_scope = ray_scope, |
|
|
ddp_timeout = ddp_timeout, |
|
|
torch_compile = torch_compile, |
|
|
torch_compile_backend = torch_compile_backend, |
|
|
torch_compile_mode = torch_compile_mode, |
|
|
include_tokens_per_second = include_tokens_per_second, |
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
|
neftune_noise_alpha = neftune_noise_alpha, |
|
|
optim_target_modules = optim_target_modules, |
|
|
batch_eval_metrics = batch_eval_metrics, |
|
|
eval_on_start = eval_on_start, |
|
|
use_liger_kernel = use_liger_kernel, |
|
|
liger_kernel_config = liger_kernel_config, |
|
|
eval_use_gather_object = eval_use_gather_object, |
|
|
average_tokens_across_devices = average_tokens_across_devices, |
|
|
model_init_kwargs = model_init_kwargs, |
|
|
disable_dropout = disable_dropout, |
|
|
max_prompt_length = max_prompt_length, |
|
|
num_generations = num_generations, |
|
|
max_completion_length = max_completion_length, |
|
|
ds3_gather_for_generation = ds3_gather_for_generation, |
|
|
shuffle_dataset = shuffle_dataset, |
|
|
generation_batch_size = generation_batch_size, |
|
|
steps_per_generation = steps_per_generation, |
|
|
temperature = temperature, |
|
|
top_p = top_p, |
|
|
top_k = top_k, |
|
|
min_p = min_p, |
|
|
generation_kwargs = generation_kwargs, |
|
|
repetition_penalty = repetition_penalty, |
|
|
use_transformers_paged = use_transformers_paged, |
|
|
cache_implementation = cache_implementation, |
|
|
use_vllm = use_vllm, |
|
|
vllm_mode = vllm_mode, |
|
|
vllm_model_impl = vllm_model_impl, |
|
|
vllm_enable_sleep_mode = vllm_enable_sleep_mode, |
|
|
vllm_guided_decoding_regex = vllm_guided_decoding_regex, |
|
|
vllm_server_base_url = vllm_server_base_url, |
|
|
vllm_server_host = vllm_server_host, |
|
|
vllm_server_port = vllm_server_port, |
|
|
vllm_server_timeout = vllm_server_timeout, |
|
|
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, |
|
|
vllm_tensor_parallel_size = vllm_tensor_parallel_size, |
|
|
beta = beta, |
|
|
num_iterations = num_iterations, |
|
|
epsilon = epsilon, |
|
|
delta = delta, |
|
|
epsilon_high = epsilon_high, |
|
|
importance_sampling_level = importance_sampling_level, |
|
|
reward_weights = reward_weights, |
|
|
scale_rewards = scale_rewards, |
|
|
loss_type = loss_type, |
|
|
mask_truncated_completions = mask_truncated_completions, |
|
|
sync_ref_model = sync_ref_model, |
|
|
ref_model_mixup_alpha = ref_model_mixup_alpha, |
|
|
ref_model_sync_steps = ref_model_sync_steps, |
|
|
top_entropy_quantile = top_entropy_quantile, |
|
|
use_liger_loss = use_liger_loss, |
|
|
vllm_importance_sampling_correction = vllm_importance_sampling_correction, |
|
|
vllm_importance_sampling_cap = vllm_importance_sampling_cap, |
|
|
log_completions = log_completions, |
|
|
num_completions_to_print = num_completions_to_print, |
|
|
wandb_log_unique_prompts = wandb_log_unique_prompts,**kwargs) |
|
|
self.vllm_sampling_params = vllm_sampling_params |
|
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
|
|
|
|
pass |
|
|
|
|
|
class _UnslothGRPOTrainer(BaseTrainer): |
|
|
"""""" |
|
|
|
|
|
_tag_names = ["trl", "grpo"] |
|
|
_name = "GRPO" |
|
|
_paper = { |
|
|
"title": "DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models", |
|
|
"id": "2402.03300", |
|
|
|
|
|
"citation": textwrap.dedent("""\ |
|
|
@article{shao2024deepseekmath, |
|
|
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, |
|
|
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, |
|
|
year = 2024, |
|
|
eprint = {arXiv:2402.03300}, |
|
|
} |
|
|
"""), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model: Union[str, PreTrainedModel], |
|
|
reward_funcs: Union[RewardFunc, list[RewardFunc]], |
|
|
args: Optional[GRPOConfig] = None, |
|
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
|
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, |
|
|
processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None, |
|
|
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, |
|
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
|
peft_config: Optional["PeftConfig"] = None, |
|
|
): |
|
|
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'): |
|
|
if (getattr(args, 'use_vllm', False) == False): |
|
|
args.use_vllm = True |
|
|
args.vllm_mode='colocate' |
|
|
if os.environ.get('UNSLOTH_VLLM_STANDBY', '0') == '1': |
|
|
args.vllm_enable_sleep_mode=True |
|
|
|
|
|
if args is None: |
|
|
model_name = model if isinstance(model, str) else model.config._name_or_path |
|
|
model_name = model_name.split("/")[-1] |
|
|
args = GRPOConfig(f"{model_name}-GRPO") |
|
|
|
|
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
if isinstance(model, str): |
|
|
model_id = model |
|
|
dtype = model_init_kwargs.get("dtype") |
|
|
if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None: |
|
|
pass |
|
|
elif isinstance(dtype, str): |
|
|
dtype = getattr(torch, dtype) |
|
|
model_init_kwargs["dtype"] = dtype |
|
|
else: |
|
|
raise ValueError( |
|
|
"Invalid `dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " |
|
|
f"a `torch.dtype` (e.g., 'float32'), but got {dtype}." |
|
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_id) |
|
|
architecture = getattr(transformers, config.architectures[0]) |
|
|
model = architecture.from_pretrained(model_id, **model_init_kwargs) |
|
|
else: |
|
|
model_id = model.config._name_or_path |
|
|
if args.model_init_kwargs is not None: |
|
|
logger.warning( |
|
|
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. " |
|
|
"The `model_init_kwargs` will be ignored." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.model_kwarg_keys = ( |
|
|
inspect.signature(model.forward).parameters.keys() |
|
|
if not hasattr(model, "get_base_model") |
|
|
else inspect.signature(model.get_base_model().forward).parameters.keys() |
|
|
) |
|
|
|
|
|
if False: |
|
|
model = prepare_peft_model(model, peft_config, args) |
|
|
|
|
|
|
|
|
if processing_class is None: |
|
|
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path, truncation_side="left") |
|
|
|
|
|
|
|
|
if isinstance(processing_class, ProcessorMixin): |
|
|
tokenizer = processing_class.tokenizer |
|
|
elif isinstance(processing_class, PreTrainedTokenizerBase): |
|
|
tokenizer = processing_class |
|
|
else: |
|
|
raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`") |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
self.pad_token = tokenizer.pad_token |
|
|
self.pad_token_id = tokenizer.pad_token_id |
|
|
self.eos_token_id = tokenizer.eos_token_id |
|
|
|
|
|
|
|
|
if not isinstance(reward_funcs, list): |
|
|
reward_funcs = [reward_funcs] |
|
|
self.reward_func_names = [] |
|
|
for i, reward_func in enumerate(reward_funcs): |
|
|
if isinstance(reward_func, str): |
|
|
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( |
|
|
reward_func, num_labels=1, **model_init_kwargs |
|
|
) |
|
|
if isinstance(reward_funcs[i], nn.Module): |
|
|
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) |
|
|
else: |
|
|
self.reward_func_names.append(reward_funcs[i].__name__) |
|
|
self.reward_funcs = reward_funcs |
|
|
|
|
|
|
|
|
if args.reward_weights is not None: |
|
|
if len(args.reward_weights) != len(reward_funcs): |
|
|
raise ValueError( |
|
|
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " |
|
|
f"functions ({len(reward_funcs)})" |
|
|
) |
|
|
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) |
|
|
else: |
|
|
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) |
|
|
|
|
|
|
|
|
if reward_processing_classes is None: |
|
|
reward_processing_classes = [None] * len(reward_funcs) |
|
|
elif not isinstance(reward_processing_classes, list): |
|
|
reward_processing_classes = [reward_processing_classes] |
|
|
if len(reward_processing_classes) != len(reward_funcs): |
|
|
raise ValueError( |
|
|
f"The number of reward processing classes ({len(reward_processing_classes)}) must match the number of " |
|
|
f"reward functions ({len(reward_funcs)})." |
|
|
) |
|
|
|
|
|
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
if reward_processing_class is None: |
|
|
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) |
|
|
if reward_processing_class.pad_token_id is None: |
|
|
reward_processing_class.pad_token = reward_processing_class.eos_token |
|
|
|
|
|
|
|
|
reward_func.config.pad_token_id = reward_processing_class.pad_token_id |
|
|
reward_processing_classes[i] = reward_processing_class |
|
|
|
|
|
self.reward_processing_classes = reward_processing_classes |
|
|
|
|
|
|
|
|
self.max_prompt_length = args.max_prompt_length |
|
|
self.max_completion_length = args.max_completion_length |
|
|
self.num_generations = args.num_generations |
|
|
self.temperature = args.temperature |
|
|
self.top_p = args.top_p |
|
|
self.top_k = args.top_k |
|
|
self.min_p = args.min_p |
|
|
self.repetition_penalty = args.repetition_penalty |
|
|
self.use_transformers_paged = args.use_transformers_paged |
|
|
self.use_vllm = args.use_vllm |
|
|
self.vllm_mode = args.vllm_mode |
|
|
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization |
|
|
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size |
|
|
self.vllm_importance_sampling_correction = args.vllm_importance_sampling_correction |
|
|
self.vllm_importance_sampling_cap = args.vllm_importance_sampling_cap |
|
|
self.use_liger_loss = args.use_liger_loss |
|
|
self.loss_type = args.loss_type |
|
|
self.scale_rewards = args.scale_rewards |
|
|
self.importance_sampling_level = args.importance_sampling_level |
|
|
self.mask_truncated_completions = args.mask_truncated_completions |
|
|
self.top_entropy_quantile = args.top_entropy_quantile |
|
|
if self.use_liger_loss and self.top_entropy_quantile < 1.0: |
|
|
raise NotImplementedError( |
|
|
"Liger Kernels don't currently support masking token positions based on entropy." |
|
|
) |
|
|
if self.use_liger_loss and not self.importance_sampling_level == "token": |
|
|
raise NotImplementedError( |
|
|
"Liger Kernels currently only support token-level importance sampling. Please set" |
|
|
"`importance_sampling_level` to 'token'." |
|
|
) |
|
|
|
|
|
|
|
|
self.shuffle_dataset = args.shuffle_dataset |
|
|
|
|
|
if ( |
|
|
isinstance(train_dataset, IterableDataset) |
|
|
or isinstance(eval_dataset, IterableDataset) |
|
|
or ( |
|
|
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values()) |
|
|
) |
|
|
): |
|
|
|
|
|
raise NotImplementedError( |
|
|
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead." |
|
|
) |
|
|
|
|
|
|
|
|
self.num_iterations = args.num_iterations |
|
|
self.epsilon_low = args.epsilon |
|
|
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon |
|
|
|
|
|
self._step = 0 |
|
|
|
|
|
|
|
|
self._buffered_inputs = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
|
|
super().__init__( |
|
|
model=model, |
|
|
args=args, |
|
|
data_collator=identity, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
processing_class=processing_class, |
|
|
callbacks=callbacks, |
|
|
optimizers=optimizers, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compute_loss_func="non-None value to disable scaling", |
|
|
) |
|
|
|
|
|
|
|
|
self.beta = args.beta |
|
|
if self.beta == 0.0: |
|
|
|
|
|
self.ref_model = None |
|
|
elif is_peft_model(model): |
|
|
|
|
|
|
|
|
self.ref_model = None |
|
|
else: |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_id) |
|
|
architecture = getattr(transformers, config.architectures[0]) |
|
|
self.ref_model = architecture.from_pretrained(model_id, **model_init_kwargs) |
|
|
|
|
|
|
|
|
if args.disable_dropout: |
|
|
disable_dropout_in_model(model) |
|
|
if self.ref_model is not None: |
|
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
|
|
|
if self.use_liger_loss: |
|
|
if not is_liger_kernel_available(): |
|
|
raise ImportError( |
|
|
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`." |
|
|
) |
|
|
|
|
|
self._forward_redirection = _ForwardRedirection() |
|
|
|
|
|
self.liger_grpo_loss = LigerFusedLinearGRPOLoss( |
|
|
beta=self.beta, |
|
|
epsilon_low=self.epsilon_low, |
|
|
epsilon_high=self.epsilon_high, |
|
|
temperature=self.temperature, |
|
|
use_ref_model=self.beta != 0.0, |
|
|
loss_type=self.loss_type, |
|
|
max_completion_length=self.max_completion_length, |
|
|
) |
|
|
|
|
|
|
|
|
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} |
|
|
self._total_train_tokens = 0 |
|
|
self.log_completions = args.log_completions |
|
|
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts |
|
|
self.num_completions_to_print = args.num_completions_to_print |
|
|
|
|
|
self._logs = { |
|
|
"images": deque(maxlen=args.generation_batch_size), |
|
|
"prompt": deque(maxlen=args.generation_batch_size), |
|
|
"completion": deque(maxlen=args.generation_batch_size), |
|
|
"rewards": defaultdict(lambda: deque(maxlen=args.generation_batch_size)), |
|
|
"advantages": deque(maxlen=args.generation_batch_size), |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set_seed(args.seed, device_specific=True) |
|
|
|
|
|
if self.use_vllm: |
|
|
if not is_vllm_available(): |
|
|
raise ImportError( |
|
|
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with " |
|
|
"`pip install trl[vllm]` to use it." |
|
|
) |
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
if self.accelerator.is_main_process: |
|
|
if args.vllm_server_base_url is not None: |
|
|
base_url = args.vllm_server_base_url |
|
|
else: |
|
|
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" |
|
|
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) |
|
|
self.vllm_client.init_communicator(device=torch.cuda.current_device()) |
|
|
|
|
|
elif self.vllm_mode == "colocate": |
|
|
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0: |
|
|
raise ValueError( |
|
|
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size " |
|
|
f"({self.accelerator.num_processes}) evenly." |
|
|
) |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration( |
|
|
[ |
|
|
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size)) |
|
|
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size) |
|
|
] |
|
|
) |
|
|
os.environ["RANK"] = str(self.accelerator.process_index) |
|
|
os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index) |
|
|
os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes) |
|
|
ensure_master_addr_port() |
|
|
|
|
|
if self.max_prompt_length is not None and self.max_completion_length is not None: |
|
|
max_model_len = self.max_prompt_length + self.max_completion_length |
|
|
else: |
|
|
max_model_len = None |
|
|
self.llm = model.vllm_engine |
|
|
if self.args.vllm_enable_sleep_mode: |
|
|
self.llm.sleep(level=1) |
|
|
else: |
|
|
raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.") |
|
|
self.guided_decoding_regex = args.vllm_guided_decoding_regex |
|
|
|
|
|
self._last_loaded_step = -1 |
|
|
self.accelerator.wait_for_everyone() |
|
|
else: |
|
|
generation_kwargs = { |
|
|
"max_new_tokens": self.max_completion_length, |
|
|
"do_sample": True, |
|
|
"pad_token_id": tokenizer.pad_token_id, |
|
|
"bos_token_id": tokenizer.bos_token_id, |
|
|
"eos_token_id": tokenizer.eos_token_id, |
|
|
"temperature": self.temperature, |
|
|
"top_p": self.top_p, |
|
|
"top_k": self.top_k, |
|
|
"min_p": self.min_p, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"cache_implementation": args.cache_implementation, |
|
|
} |
|
|
if args.generation_kwargs is not None: |
|
|
generation_kwargs.update(args.generation_kwargs) |
|
|
self.generation_config = GenerationConfig(**generation_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model_accepts_loss_kwargs = False |
|
|
|
|
|
|
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
|
|
if self.ref_model is not None: |
|
|
if self.is_deepspeed_enabled: |
|
|
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) |
|
|
elif self.is_fsdp_enabled: |
|
|
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator) |
|
|
else: |
|
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
|
|
if args.sync_ref_model: |
|
|
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) |
|
|
|
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
if self.is_deepspeed_enabled: |
|
|
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) |
|
|
else: |
|
|
|
|
|
self.reward_funcs[i] = self.accelerator.prepare_model( |
|
|
reward_func, evaluation_mode=True, device_placement=True |
|
|
) |
|
|
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
|
self._signature_columns = ["prompt", "image", "images"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_train_dataloader(self): |
|
|
if self.train_dataset is None: |
|
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
|
|
train_dataset = self.train_dataset |
|
|
data_collator = self.data_collator |
|
|
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): |
|
|
train_dataset = self._remove_unused_columns(train_dataset, description="training") |
|
|
else: |
|
|
data_collator = self._get_collator_with_removed_columns(data_collator, description="training") |
|
|
|
|
|
dataloader_params = { |
|
|
"batch_size": self._train_batch_size * self.args.steps_per_generation, |
|
|
"collate_fn": data_collator, |
|
|
"num_workers": self.args.dataloader_num_workers, |
|
|
"pin_memory": self.args.dataloader_pin_memory, |
|
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
|
} |
|
|
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
|
dataloader_params["worker_init_fn"] = partial( |
|
|
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index |
|
|
) |
|
|
|
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
|
|
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dataset is None: |
|
|
dataset = self.train_dataset |
|
|
return RepeatSampler( |
|
|
data_source=dataset, |
|
|
mini_repeat_count=self.num_generations, |
|
|
batch_size=self.args.generation_batch_size // self.num_generations, |
|
|
repeat_count=self.num_iterations * self.args.steps_per_generation, |
|
|
shuffle=self.shuffle_dataset, |
|
|
seed=self.args.seed, |
|
|
) |
|
|
|
|
|
def _get_eval_sampler(self, eval_dataset) -> Sampler: |
|
|
|
|
|
return RepeatSampler( |
|
|
data_source=eval_dataset, |
|
|
mini_repeat_count=self.num_generations, |
|
|
seed=self.args.seed, |
|
|
) |
|
|
|
|
|
@profiling_decorator |
|
|
def _get_last_hidden_state( |
|
|
self, |
|
|
unwrapped_model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
pixel_values=None, |
|
|
image_grid_thw=None, |
|
|
pixel_attention_mask=None, |
|
|
image_sizes=None, |
|
|
): |
|
|
if is_peft_model(unwrapped_model): |
|
|
unwrapped_model = unwrapped_model.base_model.model |
|
|
|
|
|
|
|
|
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
|
|
|
if image_grid_thw is not None and pixel_values is not None: |
|
|
model_inputs["image_grid_thw"] = image_grid_thw |
|
|
|
|
|
if pixel_values is not None: |
|
|
model_inputs["pixel_values"] = pixel_values |
|
|
|
|
|
if pixel_attention_mask is not None: |
|
|
model_inputs["pixel_attention_mask"] = pixel_attention_mask |
|
|
|
|
|
if image_sizes is not None: |
|
|
model_inputs["image_sizes"] = image_sizes |
|
|
|
|
|
|
|
|
if "logits_to_keep" in self.model_kwarg_keys: |
|
|
|
|
|
model_inputs["logits_to_keep"] = logits_to_keep + 1 |
|
|
|
|
|
model_inputs["use_cache"] = False |
|
|
|
|
|
last_hidden_state = unwrapped_model.model(**model_inputs).last_hidden_state |
|
|
|
|
|
last_hidden_state = last_hidden_state[:, :-1, :] |
|
|
|
|
|
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] |
|
|
return last_hidden_state |
|
|
|
|
|
def get_high_entropy_mask(self, entropies: torch.Tensor, mask: torch.Tensor, threshold: float) -> torch.Tensor: |
|
|
""" |
|
|
Returns a binary mask identifying tokens whose entropy exceeds a given quantile threshold. |
|
|
|
|
|
Args: |
|
|
entropies (`torch.Tensor`): |
|
|
Tensor of shape (batch_size, seq_len) with per-token entropy values. |
|
|
mask (`torch.Tensor`): |
|
|
Binary mask of the same shape as `entropies`, where `1` indicates valid tokens and `0` padding. |
|
|
threshold (`float`): |
|
|
Quantile threshold between `0.0` and `1.0` to select high-entropy tokens. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: |
|
|
Boolean mask of shape (batch_size, seq_len), where `True` indicates tokens with entropy >= threshold |
|
|
and `False` otherwise. |
|
|
""" |
|
|
local = entropies[mask.bool()].float() |
|
|
|
|
|
|
|
|
|
|
|
pad_value = -1e9 |
|
|
|
|
|
|
|
|
padded = self.accelerator.pad_across_processes(local, dim=0, pad_index=pad_value) |
|
|
gathered = self.accelerator.gather(padded) |
|
|
|
|
|
|
|
|
gathered = gathered[gathered != pad_value] |
|
|
|
|
|
if gathered.numel() == 0: |
|
|
return torch.zeros_like(entropies, dtype=torch.bool) |
|
|
|
|
|
entropy_threshold = torch.quantile(gathered, threshold) |
|
|
masked_entropies = entropies * mask.float() |
|
|
entropy_mask = masked_entropies >= entropy_threshold |
|
|
return entropy_mask & mask.bool() |
|
|
|
|
|
def _get_per_token_logps_and_entropies( |
|
|
self, |
|
|
model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size = None, |
|
|
compute_entropy = False, |
|
|
compute_efficient = False, |
|
|
*args, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
if compute_efficient: |
|
|
return None, None |
|
|
else: |
|
|
|
|
|
if not hasattr(self, "_autocast_dtype"): |
|
|
self._autocast_dtype = ( |
|
|
torch.float16 |
|
|
if os.environ.get("ACCELERATE_MIXED_PRECISION", "fp16") == "fp16" |
|
|
else torch.bfloat16 |
|
|
) |
|
|
if os.environ.get("UNSLOTH_FORCE_FLOAT32", "0") == "1": |
|
|
self._autocast_dtype = torch.float16 |
|
|
|
|
|
pixel_values, image_grid_thw = ( |
|
|
kwargs.get("pixel_values", None), |
|
|
kwargs.get("image_grid_thw", None), |
|
|
) |
|
|
pixel_attention_mask, image_sizes = ( |
|
|
kwargs.get("pixel_attention_mask", None), |
|
|
kwargs.get("image_sizes", None), |
|
|
) |
|
|
|
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" |
|
|
|
|
|
unwrapped_model = self.accelerator.unwrap_model( |
|
|
model, keep_fp32_wrapper = False |
|
|
) |
|
|
|
|
|
with torch.amp.autocast(device_type = "cuda", dtype = self._autocast_dtype): |
|
|
with torch.inference_mode(): |
|
|
if pixel_values is None: |
|
|
attention_mask = input_ids != self.processing_class.pad_token_id |
|
|
attention_mask = attention_mask.to(attention_mask.dtype) |
|
|
|
|
|
logits = unwrapped_model( |
|
|
input_ids = input_ids, |
|
|
attention_mask = attention_mask, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
pixel_attention_mask = pixel_attention_mask, |
|
|
image_sizes = image_sizes, |
|
|
|
|
|
).logits |
|
|
else: |
|
|
logits = unwrapped_model( |
|
|
input_ids = input_ids, |
|
|
attention_mask = attention_mask, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
pixel_attention_mask = pixel_attention_mask, |
|
|
image_sizes = image_sizes, |
|
|
logits_to_keep = logits_to_keep + 1, |
|
|
).logits |
|
|
|
|
|
entropies = None |
|
|
if compute_entropy: |
|
|
from trl.trainer.utils import entropy_from_logits |
|
|
|
|
|
entropies = entropy_from_logits(logits) |
|
|
|
|
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0" |
|
|
|
|
|
return logits.detach(), entropies |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None): |
|
|
extra_prefixes = extra_prefixes or [] |
|
|
prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes |
|
|
for prefix in prefixes: |
|
|
name = name.replace(prefix, "") |
|
|
return name |
|
|
|
|
|
def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): |
|
|
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" |
|
|
|
|
|
if visited is None: |
|
|
visited = set() |
|
|
for child_name, child_module in module.named_children(): |
|
|
child_prefix = f"{prefix}.{child_name}" if prefix else child_name |
|
|
self._sync_fsdp1_params_to_vllm( |
|
|
child_module, prefix=child_prefix, visited=visited |
|
|
) |
|
|
|
|
|
if isinstance(module, FSDP): |
|
|
with FSDP.summon_full_params(module, recurse=False, writeback=False): |
|
|
for param_name, param in module.named_parameters(): |
|
|
full_name = f"{prefix}.{param_name}" if prefix else param_name |
|
|
full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."]) |
|
|
|
|
|
if full_name in visited: |
|
|
continue |
|
|
visited.add(full_name) |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(full_name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
def _sync_fsdp2_params_to_vllm(self, module: nn.Module): |
|
|
|
|
|
for name, param in module.items(): |
|
|
if param.is_cpu: |
|
|
param = param.to(torch.device("cuda")) |
|
|
param = param.full_tensor() |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
def _move_model_to_vllm(self, *args, **kwargs): |
|
|
return None |
|
|
|
|
|
@profiling_decorator |
|
|
def _prepare_inputs( |
|
|
self, generation_batch: dict[str, Union[torch.Tensor, Any]] |
|
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
if mode == "train": |
|
|
generate_every = self.args.steps_per_generation * self.num_iterations |
|
|
if self._step % generate_every == 0 or self._buffered_inputs is None: |
|
|
|
|
|
generation_batch = self._generate_and_score_completions(generation_batch) |
|
|
generation_batch = split_pixel_values_by_grid(generation_batch) |
|
|
|
|
|
try: generation_batch = shuffle_sequence_dict(generation_batch) |
|
|
|
|
|
except: pass |
|
|
generation_batches = split_tensor_dict(generation_batch, self.args.steps_per_generation) |
|
|
self._buffered_inputs = [unsplit_pixel_values_by_grid(batch) for batch in generation_batches] |
|
|
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation] |
|
|
self._step += 1 |
|
|
else: |
|
|
|
|
|
|
|
|
inputs = self._generate_and_score_completions(generation_batch) |
|
|
return inputs |
|
|
|
|
|
@profiling_decorator |
|
|
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list): |
|
|
device = self.accelerator.device |
|
|
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) |
|
|
|
|
|
|
|
|
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]] |
|
|
reward_kwargs = {key: [example[key] for example in inputs] for key in keys} |
|
|
|
|
|
|
|
|
reward_kwargs["trainer_state"] = self.state |
|
|
|
|
|
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate( |
|
|
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names) |
|
|
): |
|
|
with profiling_context(self, reward_func_name): |
|
|
if isinstance(reward_func, nn.Module): |
|
|
if is_conversational(inputs[0]): |
|
|
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] |
|
|
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] |
|
|
else: |
|
|
texts = [p + c for p, c in zip(prompts, completions)] |
|
|
reward_inputs = reward_processing_class( |
|
|
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False |
|
|
) |
|
|
reward_inputs = super()._prepare_inputs(reward_inputs) |
|
|
with torch.inference_mode(): |
|
|
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] |
|
|
else: |
|
|
output_reward_func = reward_func( |
|
|
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs |
|
|
) |
|
|
|
|
|
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] |
|
|
|
|
|
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
if torch.isnan(rewards_per_func).all(dim=1).any(): |
|
|
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0] |
|
|
row_reward_kwargs = { |
|
|
key: value[nan_row_idx] for key, value in reward_kwargs.items() if key != "trainer_state" |
|
|
} |
|
|
row_reward_kwargs["prompt"] = prompts[nan_row_idx] |
|
|
row_reward_kwargs["completion"] = completions[nan_row_idx] |
|
|
logger.warning( |
|
|
f"All reward functions returned None for the following kwargs:\n{row_reward_kwargs}\n" |
|
|
"Please ensure that at least one reward function returns a valid reward." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
rewards_per_func = gather(rewards_per_func) |
|
|
return rewards_per_func |
|
|
|
|
|
def _generate_single_turn(self, prompts: list[str], images: Optional[list]): |
|
|
device = self.accelerator.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kwargs = {} |
|
|
if images is not None: |
|
|
kwargs = {"images": images} |
|
|
for prompt, image_list in zip(prompts, images): |
|
|
if isinstance(prompt, list): |
|
|
prepare_multimodal_messages(prompt, num_images=len(image_list)) |
|
|
|
|
|
|
|
|
_chat_template_ = getattr(self.processing_class, "chat_template", None) |
|
|
if _chat_template_ is None: _chat_template_ = "" |
|
|
_supported_keys_ = set(("prompt", "chosen", "rejected", "completion", "messages", "label")) |
|
|
|
|
|
prompts_text = [] |
|
|
for _example_ in prompts: |
|
|
_tokenizer_kwargs_ = {} |
|
|
if type(_example_) is not dict: |
|
|
_example_ = {"prompt": _example_} |
|
|
_left_keys_ = _example_.keys() - _supported_keys_ |
|
|
for k in _left_keys_: |
|
|
if k in _chat_template_: |
|
|
v = _example_[k] |
|
|
if type(v) is str: |
|
|
_tokenizer_kwargs_[k] = v |
|
|
_x_ = maybe_apply_chat_template(_example_, self.processing_class, **_tokenizer_kwargs_)["prompt"] |
|
|
prompts_text.append(_x_) |
|
|
if images is not None: |
|
|
prompt_inputs = self.processing_class(text=prompts_text, padding=True, return_tensors="pt", **kwargs) |
|
|
prompt_inputs = super()._prepare_inputs(prompt_inputs) |
|
|
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]} |
|
|
else: |
|
|
forward_kwargs = {} |
|
|
|
|
|
|
|
|
if self.use_vllm: |
|
|
if self.vllm_mode == "colocate" and self.args.vllm_enable_sleep_mode: |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
self.llm.wake_up() |
|
|
|
|
|
|
|
|
if self.state.global_step != self._last_loaded_step: |
|
|
self._move_model_to_vllm() |
|
|
self._last_loaded_step = self.state.global_step |
|
|
|
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
all_prompts_text = gather_object(prompts_text) |
|
|
if images is not None: |
|
|
all_images = gather_object(images) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
|
|
|
|
|
|
|
|
|
|
ordered_set_of_prompts = all_prompts_text[:: self.num_generations] |
|
|
|
|
|
if images is not None: |
|
|
ordered_set_of_images = all_images[:: self.num_generations] |
|
|
else: |
|
|
ordered_set_of_images = None |
|
|
|
|
|
with profiling_context(self, "vLLM.generate"): |
|
|
output = self.vllm_client.generate( |
|
|
prompts=ordered_set_of_prompts, |
|
|
images=ordered_set_of_images, |
|
|
n=self.num_generations, |
|
|
repetition_penalty=self.repetition_penalty, |
|
|
temperature=self.temperature, |
|
|
top_p=self.top_p, |
|
|
top_k=-1 if self.top_k is None else self.top_k, |
|
|
min_p=0.0 if self.min_p is None else self.min_p, |
|
|
max_tokens=self.max_completion_length, |
|
|
truncate_prompt_tokens=self.max_prompt_length, |
|
|
guided_decoding_regex=self.guided_decoding_regex, |
|
|
generation_kwargs=self.args.generation_kwargs, |
|
|
) |
|
|
payload = (output["prompt_ids"], output["completion_ids"], output["logprobs"]) |
|
|
else: |
|
|
payload = None |
|
|
|
|
|
|
|
|
obj_list = [payload] |
|
|
broadcast_object_list(obj_list, from_process=0) |
|
|
all_prompt_ids, all_completion_ids, all_logprobs = obj_list[0] |
|
|
|
|
|
|
|
|
all_prompt_ids = [ids for ids in all_prompt_ids for _ in range(self.num_generations)] |
|
|
|
|
|
process_slice = slice( |
|
|
self.accelerator.process_index * len(prompts), |
|
|
(self.accelerator.process_index + 1) * len(prompts), |
|
|
) |
|
|
prompt_ids = all_prompt_ids[process_slice] |
|
|
completion_ids = all_completion_ids[process_slice] |
|
|
logprobs = all_logprobs[process_slice] |
|
|
|
|
|
|
|
|
elif self.vllm_mode == "colocate": |
|
|
if self.guided_decoding_regex: |
|
|
guided_decoding = GuidedDecodingParams(regex=self.guided_decoding_regex) |
|
|
else: |
|
|
guided_decoding = None |
|
|
|
|
|
generation_kwargs = { |
|
|
"n": 1, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"temperature": self.temperature, |
|
|
"top_p": self.top_p, |
|
|
"top_k": -1 if self.top_k is None else self.top_k, |
|
|
"min_p": 0.0 if self.min_p is None else self.min_p, |
|
|
"max_tokens": self.max_completion_length, |
|
|
"truncate_prompt_tokens": self.max_prompt_length, |
|
|
"guided_decoding": guided_decoding, |
|
|
"logprobs": 0, |
|
|
} |
|
|
if self.args.generation_kwargs is not None: |
|
|
generation_kwargs.update(self.args.generation_kwargs) |
|
|
sampling_params = SamplingParams(**grpo_update_SamplingParams(SamplingParams, generation_kwargs, getattr(self.args, 'vllm_sampling_params', None))) |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
|
|
|
orig_size = len(prompts_text) |
|
|
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)] |
|
|
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group) |
|
|
all_prompts_text = [p for sublist in gathered_prompts for p in sublist] |
|
|
|
|
|
if images is not None: |
|
|
gathered_images = [None for _ in range(self.vllm_tensor_parallel_size)] |
|
|
torch.distributed.all_gather_object(gathered_images, images, group=self.tp_group) |
|
|
all_images = [img for sublist in gathered_images for img in sublist] |
|
|
else: |
|
|
all_images = None |
|
|
else: |
|
|
all_prompts_text = prompts_text |
|
|
all_images = images |
|
|
|
|
|
if images is not None and all_images: |
|
|
vllm_inputs = [] |
|
|
for prompt, image_list in zip(all_prompts_text, all_images): |
|
|
vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image_list}}) |
|
|
|
|
|
else: |
|
|
vllm_inputs = all_prompts_text |
|
|
|
|
|
with profiling_context(self, "vLLM.generate"): |
|
|
all_outputs = self.llm.generate(vllm_inputs, sampling_params=sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True)) |
|
|
|
|
|
all_prompt_ids = [output.prompt_token_ids for output in all_outputs] |
|
|
all_completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs] |
|
|
all_logprobs = [ |
|
|
[next(iter(lp.values())).logprob for lp in output.logprobs] |
|
|
for outputs in all_outputs |
|
|
for output in outputs.outputs |
|
|
] |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
|
|
|
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group) |
|
|
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size) |
|
|
prompt_ids = all_prompt_ids[tp_slice] |
|
|
completion_ids = all_completion_ids[tp_slice] |
|
|
logprobs = all_logprobs[tp_slice] |
|
|
else: |
|
|
prompt_ids = all_prompt_ids |
|
|
completion_ids = all_completion_ids |
|
|
logprobs = all_logprobs |
|
|
|
|
|
if self.args.vllm_enable_sleep_mode: |
|
|
self.llm.sleep(level=1) |
|
|
|
|
|
elif self.use_transformers_paged: |
|
|
|
|
|
|
|
|
paged_prompt_inputs = self.processing_class(text=prompts_text, **kwargs) |
|
|
previous_attn = self.model_wrapped.config._attn_implementation |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
|
self.model_wrapped.config._attn_implementation = "paged_attention" |
|
|
else: |
|
|
self.model_wrapped.config._attn_implementation = "sdpa_paged" |
|
|
with ( |
|
|
profiling_context(self, "transformers.generate_batch"), |
|
|
unwrap_model_for_generation( |
|
|
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
|
|
|
if self.args.bf16: |
|
|
unwrapped_model.to(torch.bfloat16) |
|
|
elif self.args.fp16: |
|
|
unwrapped_model.to(torch.float16) |
|
|
with torch.inference_mode(): |
|
|
all_outputs = unwrapped_model.generate_batch( |
|
|
paged_prompt_inputs.input_ids, generation_config=self.generation_config, progress_bar=False |
|
|
) |
|
|
unwrapped_model.train() |
|
|
completion_ids = [output.generated_tokens for output in all_outputs.values()] |
|
|
prompt_ids = paged_prompt_inputs.input_ids |
|
|
|
|
|
self.model_wrapped.config._attn_implementation = previous_attn |
|
|
logprobs = None |
|
|
|
|
|
else: |
|
|
|
|
|
generate_inputs = self.processing_class( |
|
|
text=prompts_text, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
padding_side="left", |
|
|
max_length=self.max_prompt_length, |
|
|
truncation=True, |
|
|
add_special_tokens=False, |
|
|
**kwargs, |
|
|
) |
|
|
generate_inputs = super()._prepare_inputs(generate_inputs) |
|
|
|
|
|
with ( |
|
|
profiling_context(self, "transformers.generate"), |
|
|
unwrap_model_for_generation( |
|
|
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
prompt_completion_ids = unwrapped_model.generate( |
|
|
**generate_inputs, generation_config=self.generation_config, disable_compile=True |
|
|
) |
|
|
|
|
|
prompt_ids, prompt_mask = generate_inputs["input_ids"], generate_inputs["attention_mask"] |
|
|
prompt_length = prompt_ids.size(1) |
|
|
completion_ids = prompt_completion_ids[:, prompt_length:] |
|
|
|
|
|
|
|
|
is_eos = completion_ids == self.eos_token_id |
|
|
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) |
|
|
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] |
|
|
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) |
|
|
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() |
|
|
prompt_ids = [p[m].tolist() for p, m in zip(prompt_ids, prompt_mask.bool())] |
|
|
completion_ids = [c[m].tolist() for c, m in zip(completion_ids, completion_mask.bool())] |
|
|
logprobs = None |
|
|
|
|
|
return prompt_ids, completion_ids, logprobs, forward_kwargs |
|
|
|
|
|
def _generate(self, prompts: list[str], images: Optional[list]): |
|
|
device = self.accelerator.device |
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
prompt_ids, completion_ids, logprobs, forward_kwargs = self._generate_single_turn(prompts, images) |
|
|
|
|
|
|
|
|
prompt_lengths = torch.tensor([len(ids) for ids in prompt_ids], device=device) |
|
|
completion_lengths = torch.tensor([len(ids) for ids in completion_ids], device=device) |
|
|
agg_prompt_lengths = self.accelerator.gather(prompt_lengths) |
|
|
agg_completion_lengths = self.accelerator.gather(completion_lengths) |
|
|
total_prompt_tokens = agg_prompt_lengths.sum() |
|
|
total_completion_tokens = agg_completion_lengths.sum() |
|
|
|
|
|
|
|
|
if mode == "train": |
|
|
self.state.num_input_tokens_seen += (total_prompt_tokens + total_completion_tokens).item() |
|
|
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen] |
|
|
|
|
|
|
|
|
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item()) |
|
|
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item()) |
|
|
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item()) |
|
|
|
|
|
|
|
|
eos_and_pad = [self.eos_token_id, self.pad_token_id] |
|
|
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids], device=device) |
|
|
agg_is_truncated = self.accelerator.gather(is_truncated) |
|
|
self._metrics[mode]["completions/clipped_ratio"].append(agg_is_truncated.float().mean().item()) |
|
|
term_completion_lengths = agg_completion_lengths[~agg_is_truncated] |
|
|
if len(term_completion_lengths) == 0: |
|
|
term_completion_lengths = torch.zeros(1, device=device) |
|
|
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item()) |
|
|
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item()) |
|
|
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item()) |
|
|
|
|
|
return prompt_ids, completion_ids, total_completion_tokens, logprobs, forward_kwargs |
|
|
|
|
|
def _generate_and_score_completions( |
|
|
self, inputs: list[dict[str, Union[torch.Tensor, Any]]] |
|
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
|
device = self.accelerator.device |
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
prompts = [x["prompt"] for x in inputs] |
|
|
|
|
|
if "images" in inputs[0]: |
|
|
images = [example.get("images") for example in inputs] |
|
|
elif "image" in inputs[0]: |
|
|
images = [[example.get("image")] if example.get("image") is not None else None for example in inputs] |
|
|
else: |
|
|
images = None |
|
|
|
|
|
if images is not None and all(img_list == [] for img_list in images): |
|
|
images = None |
|
|
|
|
|
( |
|
|
prompt_ids_list, |
|
|
completion_ids_list, |
|
|
num_items_in_batch, |
|
|
sampling_per_token_logps_list, |
|
|
forward_kwargs, |
|
|
) = self._generate(prompts, images) |
|
|
|
|
|
|
|
|
prompt_ids = [torch.tensor(ids, device=device) for ids in prompt_ids_list] |
|
|
prompt_mask = [torch.ones_like(ids, dtype=torch.long) for ids in prompt_ids] |
|
|
prompt_ids = pad(prompt_ids, padding_value=self.pad_token_id, padding_side="left") |
|
|
prompt_mask = pad(prompt_mask, padding_value=0, padding_side="left") |
|
|
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids_list] |
|
|
completion_mask = [torch.ones_like(ids, dtype=torch.long) for ids in completion_ids] |
|
|
completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right") |
|
|
completion_mask = pad(completion_mask, padding_value=0, padding_side="right") |
|
|
if sampling_per_token_logps_list is not None: |
|
|
sampling_per_token_logps = [torch.tensor(logps, device=device) for logps in sampling_per_token_logps_list] |
|
|
sampling_per_token_logps = pad(sampling_per_token_logps, padding_value=0.0, padding_side="right") |
|
|
else: |
|
|
sampling_per_token_logps = None |
|
|
|
|
|
|
|
|
if self.mask_truncated_completions: |
|
|
eos_and_pad = [self.eos_token_id, self.pad_token_id] |
|
|
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids_list], device=device) |
|
|
completion_mask = completion_mask * (~is_truncated).unsqueeze(1).int() |
|
|
|
|
|
|
|
|
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
|
|
|
if "token_type_ids" in forward_kwargs: |
|
|
token_type_ids = forward_kwargs["token_type_ids"] |
|
|
forward_kwargs["token_type_ids"] = torch.cat( |
|
|
[token_type_ids, token_type_ids.new_zeros(completion_ids.shape)], dim=1 |
|
|
) |
|
|
|
|
|
logits_to_keep = completion_ids.size(1) |
|
|
|
|
|
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size |
|
|
try: |
|
|
|
|
|
if not has_images: |
|
|
|
|
|
prompt_completion_ids = left_pack_padding(prompt_completion_ids, self.processing_class.pad_token_id) |
|
|
self.model.for_training() |
|
|
except: |
|
|
|
|
|
if images is None: |
|
|
|
|
|
prompt_completion_ids = left_pack_padding(prompt_completion_ids, self.processing_class.pad_token_id) |
|
|
self.model.for_training() |
|
|
|
|
|
num_images = [len(img_list) for img_list in images] if images is not None else None |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generate_every = self.args.steps_per_generation * self.num_iterations |
|
|
|
|
|
if self.args.gradient_accumulation_steps % generate_every != 0 or ( |
|
|
self.use_vllm |
|
|
): |
|
|
old_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
else: |
|
|
old_per_token_logps = None |
|
|
|
|
|
|
|
|
if self.use_vllm and self.vllm_importance_sampling_correction: |
|
|
importance_sampling_ratio = torch.exp(old_per_token_logps - sampling_per_token_logps) |
|
|
importance_sampling_ratio = torch.clamp( |
|
|
importance_sampling_ratio, max=self.vllm_importance_sampling_cap |
|
|
) |
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
|
if self.ref_model is not None: |
|
|
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.ref_model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size=batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
else: |
|
|
with self.accelerator.unwrap_model(self.model).disable_adapter(): |
|
|
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size=batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
else: |
|
|
ref_per_token_logps = None |
|
|
|
|
|
|
|
|
prompts_text = self.processing_class.batch_decode(prompt_ids, skip_special_tokens=True) |
|
|
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
|
if is_conversational(inputs[0]): |
|
|
completions = [] |
|
|
for prompt, completion in zip(prompts, completions_text): |
|
|
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" |
|
|
completions.append([{"role": "assistant", "content": bootstrap + completion}]) |
|
|
else: |
|
|
completions = completions_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rewards_per_func = self._calculate_rewards(inputs, prompts, completions, completion_ids_list) |
|
|
|
|
|
|
|
|
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) |
|
|
|
|
|
|
|
|
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1) |
|
|
|
|
|
|
|
|
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) |
|
|
advantages = rewards - mean_grouped_rewards |
|
|
|
|
|
if self.scale_rewards in ["group", "none"]: |
|
|
|
|
|
std_rewards = rewards.view(-1, self.num_generations).std(dim=1) |
|
|
std_rewards = std_rewards.repeat_interleave(self.num_generations, dim=0) |
|
|
elif self.scale_rewards == "batch": |
|
|
|
|
|
std_rewards = rewards.std().expand_as(rewards) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Invalid value for scale_rewards: {self.scale_rewards}. Must be one of 'batch', 'group', or 'none'." |
|
|
) |
|
|
|
|
|
is_std_zero = torch.isclose(std_rewards, torch.zeros_like(std_rewards)) |
|
|
if self.scale_rewards != "none": |
|
|
advantages = advantages / (std_rewards + 1e-4) |
|
|
|
|
|
|
|
|
process_slice = slice( |
|
|
self.accelerator.process_index * len(prompts), |
|
|
(self.accelerator.process_index + 1) * len(prompts), |
|
|
) |
|
|
all_process_advantages = advantages.clone() |
|
|
advantages = advantages[process_slice] |
|
|
|
|
|
|
|
|
for i, reward_func_name in enumerate(self.reward_func_names): |
|
|
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item() |
|
|
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards) |
|
|
std_func_rewards = nanstd(rewards_per_func[:, i]).item() |
|
|
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_func_rewards) |
|
|
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item()) |
|
|
self._metrics[mode]["reward_std"].append(std_rewards.mean().item()) |
|
|
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item()) |
|
|
|
|
|
|
|
|
self._logs["prompt"].extend(gather_object(prompts_text)) |
|
|
self._logs["completion"].extend(gather_object(completions_text)) |
|
|
for i, name in enumerate(self.reward_func_names): |
|
|
self._logs["rewards"][name].extend(rewards_per_func[:, i].tolist()) |
|
|
self._logs["advantages"].extend(all_process_advantages.tolist()) |
|
|
|
|
|
if images is not None: |
|
|
self._logs["images"].extend(gather_object(images)) |
|
|
|
|
|
if self.use_vllm and self.vllm_importance_sampling_correction: |
|
|
delta = torch.abs(old_per_token_logps - sampling_per_token_logps) |
|
|
delta = delta[completion_mask.bool()] |
|
|
mean_delta = torch.mean(delta) if delta.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
max_delta = torch.max(delta) if delta.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
self._metrics[mode]["sampling/sampling_logp_difference/mean"].append( |
|
|
self.accelerator.gather(mean_delta).mean().item() |
|
|
) |
|
|
self._metrics[mode]["sampling/sampling_logp_difference/max"].append( |
|
|
self.accelerator.gather(max_delta).max().item() |
|
|
) |
|
|
|
|
|
flat_is_ratio = importance_sampling_ratio[completion_mask.bool()] |
|
|
min_importance_sampling_ratio = ( |
|
|
torch.min(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
) |
|
|
mean_importance_sampling_ratio = ( |
|
|
torch.mean(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
) |
|
|
max_importance_sampling_ratio = ( |
|
|
torch.max(flat_is_ratio) if flat_is_ratio.numel() > 0 else torch.tensor(0.0, device=device) |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/min"].append( |
|
|
nanmin(self.accelerator.gather(min_importance_sampling_ratio)).item() |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/mean"].append( |
|
|
self.accelerator.gather(mean_importance_sampling_ratio).nanmean().item() |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/max"].append( |
|
|
nanmax(self.accelerator.gather(max_importance_sampling_ratio)).item() |
|
|
) |
|
|
|
|
|
output = { |
|
|
"prompt_ids": prompt_ids, |
|
|
"prompt_mask": prompt_mask, |
|
|
"completion_ids": completion_ids, |
|
|
"completion_mask": completion_mask, |
|
|
"advantages": advantages, |
|
|
"num_items_in_batch": num_items_in_batch, |
|
|
} |
|
|
if old_per_token_logps is not None: |
|
|
output["old_per_token_logps"] = old_per_token_logps |
|
|
if self.use_vllm and self.vllm_importance_sampling_correction: |
|
|
output["importance_sampling_ratio"] = importance_sampling_ratio |
|
|
if ref_per_token_logps is not None: |
|
|
output["ref_per_token_logps"] = ref_per_token_logps |
|
|
if "pixel_values" in forward_kwargs: |
|
|
output["pixel_values"] = forward_kwargs["pixel_values"] |
|
|
if "image_grid_thw" in forward_kwargs: |
|
|
output["image_grid_thw"] = forward_kwargs["image_grid_thw"] |
|
|
if "pixel_attention_mask" in forward_kwargs: |
|
|
output["pixel_attention_mask"] = forward_kwargs["pixel_attention_mask"] |
|
|
if "image_sizes" in forward_kwargs: |
|
|
output["image_sizes"] = forward_kwargs["image_sizes"] |
|
|
if "token_type_ids" in forward_kwargs: |
|
|
output["token_type_ids"] = forward_kwargs["token_type_ids"] |
|
|
if images is not None: |
|
|
output["num_images"] = num_images |
|
|
return output |
|
|
|
|
|
def compute_liger_loss(self, unwrapped_model, inputs): |
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
logits_to_keep = completion_ids.size(1) |
|
|
|
|
|
|
|
|
last_hidden_state = self._get_last_hidden_state( |
|
|
unwrapped_model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
inputs.get("pixel_values"), |
|
|
inputs.get("image_grid_thw"), |
|
|
inputs.get("pixel_attention_mask"), |
|
|
inputs.get("image_sizes"), |
|
|
) |
|
|
|
|
|
|
|
|
loss, metrics = self.liger_grpo_loss( |
|
|
_input=last_hidden_state, |
|
|
lin_weight=unwrapped_model.lm_head.weight, |
|
|
selected_token_ids=completion_ids, |
|
|
attention_mask=completion_mask, |
|
|
advantages=inputs["advantages"], |
|
|
bias=unwrapped_model.lm_head.bias, |
|
|
old_per_token_logps=inputs.get("old_per_token_logps"), |
|
|
ref_per_token_logps=inputs.get("ref_per_token_logps"), |
|
|
) |
|
|
|
|
|
|
|
|
mean_kl = metrics[0] if self.beta != 0.0 else None |
|
|
clip_ratio = metrics[-1] |
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
if self.beta != 0.0: |
|
|
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item()) |
|
|
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item()) |
|
|
return loss / self.current_gradient_accumulation_steps |
|
|
|
|
|
def compute_loss( |
|
|
self, model, inputs, return_outputs = False, num_items_in_batch = None |
|
|
): |
|
|
if return_outputs: |
|
|
raise ValueError("The GRPOTrainer does not support returning outputs") |
|
|
|
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
|
completion_ids, completion_mask = ( |
|
|
inputs["completion_ids"], |
|
|
inputs["completion_mask"], |
|
|
) |
|
|
pixel_values, image_grid_thw = ( |
|
|
inputs.get("pixel_values", None), |
|
|
inputs.get("image_grid_thw", None), |
|
|
) |
|
|
pixel_attention_mask, image_sizes = ( |
|
|
inputs.get("pixel_attention_mask", None), |
|
|
inputs.get("image_sizes", None), |
|
|
) |
|
|
num_items_in_batch = inputs.get("num_items_in_batch", None) |
|
|
sampling_per_token_logps = inputs.get("sampling_per_token_logps", None) |
|
|
current_gradient_accumulation_steps = self.current_gradient_accumulation_steps |
|
|
num_processes = self.accelerator.num_processes |
|
|
|
|
|
input_ids = torch.cat([prompt_ids, completion_ids], dim = 1) |
|
|
bsz, qlen = input_ids.shape |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim = 1) |
|
|
|
|
|
logits_to_keep = completion_ids.size( |
|
|
1 |
|
|
) |
|
|
_input_ids = input_ids |
|
|
_logits_to_keep = logits_to_keep |
|
|
|
|
|
get_logps_func = ( |
|
|
lambda model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size = None, |
|
|
compute_entropy = False, |
|
|
compute_efficient = False: self._get_per_token_logps( |
|
|
model, input_ids, attention_mask, logits_to_keep, compute_efficient |
|
|
) |
|
|
if hasattr(self, "_get_per_token_logps") |
|
|
else self._get_per_token_logps_and_entropies( |
|
|
model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size, |
|
|
compute_entropy, |
|
|
compute_efficient, |
|
|
)[0] |
|
|
) |
|
|
|
|
|
per_token_logps = get_logps_func( |
|
|
model, input_ids, attention_mask, logits_to_keep, compute_efficient = True |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ref_hidden_states = inputs.get("ref_per_token_logps", None) |
|
|
|
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
|
|
|
|
|
|
|
|
|
old_hidden_states = inputs.get("old_per_token_logps", None) |
|
|
|
|
|
input_ids = input_ids[:, -logits_to_keep:] |
|
|
|
|
|
|
|
|
logit_softcapping = getattr(model.config, "final_logit_softcapping", 0) |
|
|
if logit_softcapping is None: |
|
|
logit_softcapping = 0 |
|
|
logit_scale_multiply = getattr(model.config, "logit_scale", 0) |
|
|
if logit_scale_multiply is None: |
|
|
logit_scale_multiply = 0 |
|
|
logit_scale_divide = getattr(model.config, "logits_scaling", 0) |
|
|
if logit_scale_divide is None: |
|
|
logit_scale_divide = 0 |
|
|
|
|
|
if per_token_logps is not None: |
|
|
if ref_hidden_states is not None: |
|
|
ref_hidden_states = ref_hidden_states[ |
|
|
:, :-1, : |
|
|
] |
|
|
if old_hidden_states is not None: |
|
|
old_hidden_states = old_hidden_states[ |
|
|
:, :-1, : |
|
|
] |
|
|
per_token_logps = per_token_logps[ |
|
|
:, :-1, : |
|
|
] |
|
|
|
|
|
loss, completion_length, mean_kl, delta, flat_is_ratio = ( |
|
|
grpo_compute_loss_slow( |
|
|
ref_hidden_states, |
|
|
per_token_logps, |
|
|
old_hidden_states, |
|
|
input_ids, |
|
|
completion_mask, |
|
|
self.beta, |
|
|
advantages, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
loss_type = self.args.loss_type, |
|
|
importance_sampling_level = self.importance_sampling_level, |
|
|
epsilon_low = self.epsilon_low, |
|
|
epsilon_high = self.epsilon_high, |
|
|
max_completion_length = self.args.max_completion_length, |
|
|
delta = self.args.delta, |
|
|
temperature = self.args.temperature, |
|
|
logit_softcapping = logit_softcapping, |
|
|
logit_scale_multiply = logit_scale_multiply, |
|
|
logit_scale_divide = logit_scale_divide, |
|
|
num_items_in_batch = num_items_in_batch, |
|
|
current_gradient_accumulation_steps = current_gradient_accumulation_steps, |
|
|
num_processes = num_processes, |
|
|
sampling_per_token_logps = sampling_per_token_logps, |
|
|
) |
|
|
) |
|
|
else: |
|
|
if hasattr(self.args, "loss_type"): |
|
|
loss, completion_length, mean_kl, delta, flat_is_ratio = ( |
|
|
grpo_accumulated_loss( |
|
|
trainer = self, |
|
|
input_ids = _input_ids, |
|
|
pixel_values = pixel_values, |
|
|
image_grid_thw = image_grid_thw, |
|
|
logits_to_keep = logits_to_keep, |
|
|
completion_mask = completion_mask, |
|
|
advantages = advantages, |
|
|
old_hidden_states = old_hidden_states, |
|
|
ref_hidden_states = ref_hidden_states, |
|
|
n_chunks = self.args.unsloth_num_chunks, |
|
|
loss_type = self.args.loss_type, |
|
|
importance_sampling_level = self.importance_sampling_level, |
|
|
epsilon_low = self.epsilon_low, |
|
|
epsilon_high = self.epsilon_high, |
|
|
max_completion_length = self.args.max_completion_length, |
|
|
delta = self.args.delta, |
|
|
temperature = self.args.temperature, |
|
|
logit_softcapping = logit_softcapping, |
|
|
logit_scale_multiply = logit_scale_multiply, |
|
|
logit_scale_divide = logit_scale_divide, |
|
|
attention_mask = attention_mask, |
|
|
num_items_in_batch = num_items_in_batch, |
|
|
current_gradient_accumulation_steps = current_gradient_accumulation_steps, |
|
|
num_processes = num_processes, |
|
|
sampling_per_token_logps = sampling_per_token_logps, |
|
|
) |
|
|
) |
|
|
else: |
|
|
|
|
|
loss, completion_length, mean_kl = grpo_accumulated_loss( |
|
|
trainer = self, |
|
|
input_ids = _input_ids, |
|
|
logits_to_keep = logits_to_keep, |
|
|
completion_mask = completion_mask, |
|
|
advantages = advantages, |
|
|
old_hidden_states = old_hidden_states, |
|
|
ref_hidden_states = ref_hidden_states, |
|
|
n_chunks = self.args.unsloth_num_chunks, |
|
|
temperature = self.args.temperature, |
|
|
logit_softcapping = logit_softcapping, |
|
|
logit_scale_multiply = logit_scale_multiply, |
|
|
logit_scale_divide = logit_scale_divide, |
|
|
attention_mask = attention_mask, |
|
|
) |
|
|
|
|
|
if "train" in self._metrics: |
|
|
mode = "eval" if self.control.should_evaluate else "train" |
|
|
self._metrics[mode]["completion_length"].append(completion_length.item()) |
|
|
self._metrics[mode]["kl"].append(mean_kl.item()) |
|
|
else: |
|
|
self._metrics["completion_length"].append(completion_length.item()) |
|
|
self._metrics["kl"].append(mean_kl.item()) |
|
|
|
|
|
if self.use_vllm and delta is not None: |
|
|
mean_delta = ( |
|
|
torch.mean(delta) |
|
|
if delta.numel() > 0 |
|
|
else torch.tensor(0.0, device = self.model.device) |
|
|
) |
|
|
max_delta = ( |
|
|
torch.max(delta) |
|
|
if delta.numel() > 0 |
|
|
else torch.tensor(0.0, device = self.model.device) |
|
|
) |
|
|
self._metrics[mode]["sampling/sampling_logp_difference/mean"].append( |
|
|
self.accelerator.gather(mean_delta).mean().item() |
|
|
) |
|
|
self._metrics[mode]["sampling/sampling_logp_difference/max"].append( |
|
|
self.accelerator.gather(max_delta).max().item() |
|
|
) |
|
|
|
|
|
min_importance_sampling_ratio = ( |
|
|
torch.min(flat_is_ratio) |
|
|
if flat_is_ratio.numel() > 0 |
|
|
else torch.tensor(0.0, device = self.model.device) |
|
|
) |
|
|
mean_importance_sampling_ratio = ( |
|
|
torch.mean(flat_is_ratio) |
|
|
if flat_is_ratio.numel() > 0 |
|
|
else torch.tensor(0.0, device = self.model.device) |
|
|
) |
|
|
max_importance_sampling_ratio = ( |
|
|
torch.max(flat_is_ratio) |
|
|
if flat_is_ratio.numel() > 0 |
|
|
else torch.tensor(0.0, device = self.model.device) |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/min"].append( |
|
|
nanmin(self.accelerator.gather(min_importance_sampling_ratio)).item() |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/mean"].append( |
|
|
self.accelerator.gather(mean_importance_sampling_ratio).nanmean().item() |
|
|
) |
|
|
self._metrics[mode]["sampling/importance_sampling_ratio/max"].append( |
|
|
nanmax(self.accelerator.gather(max_importance_sampling_ratio)).item() |
|
|
) |
|
|
|
|
|
return loss |
|
|
|
|
|
def _compute_loss(self, model, inputs): |
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
logits_to_keep = completion_ids.size(1) |
|
|
|
|
|
|
|
|
per_token_logps, entropies = self._get_per_token_logps_and_entropies( |
|
|
model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
compute_entropy=True, |
|
|
pixel_values=inputs.get("pixel_values"), |
|
|
image_grid_thw=inputs.get("image_grid_thw"), |
|
|
num_images=inputs.get("num_images"), |
|
|
pixel_attention_mask=inputs.get("pixel_attention_mask"), |
|
|
image_sizes=inputs.get("image_sizes"), |
|
|
token_type_ids=inputs.get("token_type_ids"), |
|
|
) |
|
|
|
|
|
if self.top_entropy_quantile < 1.0: |
|
|
entropy_mask = self.get_high_entropy_mask(entropies, completion_mask, 1 - self.top_entropy_quantile) |
|
|
else: |
|
|
entropy_mask = None |
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
|
ref_per_token_logps = inputs["ref_per_token_logps"] |
|
|
per_token_kl = ( |
|
|
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1 |
|
|
) |
|
|
|
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
old_per_token_logps = inputs.get("old_per_token_logps") |
|
|
old_per_token_logps = per_token_logps.detach() if old_per_token_logps is None else old_per_token_logps |
|
|
|
|
|
log_ratio = per_token_logps - old_per_token_logps |
|
|
if self.importance_sampling_level == "token": |
|
|
log_importance_weights = log_ratio |
|
|
elif self.importance_sampling_level == "sequence": |
|
|
log_importance_weights = (log_ratio * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0) |
|
|
log_importance_weights = log_importance_weights.unsqueeze(-1) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unknown importance sampling level: {self.importance_sampling_level}. Possible values are 'token' " |
|
|
"and 'sequence'." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
coef_1 = torch.exp(log_importance_weights) |
|
|
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high) |
|
|
|
|
|
|
|
|
if self.args.delta is not None: |
|
|
coef_1 = torch.clamp(coef_1, max=self.args.delta) |
|
|
|
|
|
per_token_loss1 = coef_1 * advantages.unsqueeze(1) |
|
|
per_token_loss2 = coef_2 * advantages.unsqueeze(1) |
|
|
per_token_loss = -torch.min(per_token_loss1, per_token_loss2) |
|
|
if entropy_mask is not None: |
|
|
per_token_loss = per_token_loss * entropy_mask |
|
|
|
|
|
if self.use_vllm and self.vllm_importance_sampling_correction: |
|
|
per_token_loss = per_token_loss * inputs["importance_sampling_ratio"] |
|
|
|
|
|
if self.beta != 0.0: |
|
|
per_token_loss = per_token_loss + self.beta * per_token_kl |
|
|
|
|
|
if self.loss_type == "grpo": |
|
|
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean() |
|
|
loss = loss / self.current_gradient_accumulation_steps |
|
|
elif self.loss_type == "bnpo": |
|
|
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0) |
|
|
loss = loss / self.current_gradient_accumulation_steps |
|
|
elif self.loss_type == "dr_grpo": |
|
|
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length) |
|
|
loss = loss / self.current_gradient_accumulation_steps |
|
|
elif self.loss_type == "dapo": |
|
|
normalizer = inputs["num_items_in_batch"] / self.accelerator.num_processes |
|
|
loss = (per_token_loss * completion_mask).sum() / normalizer |
|
|
else: |
|
|
raise ValueError(f"Unknown loss type: {self.loss_type}") |
|
|
|
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
completion_token_count = completion_mask.sum().clamp(min=1.0) |
|
|
|
|
|
def masked_batch_mean(x): |
|
|
if x.shape[1] == 1: |
|
|
return x.mean() |
|
|
else: |
|
|
return (x * completion_mask).sum() / completion_token_count |
|
|
|
|
|
if self.beta != 0.0: |
|
|
mean_kl = masked_batch_mean(per_token_kl) |
|
|
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item()) |
|
|
|
|
|
mean_entropy = masked_batch_mean(entropies) |
|
|
self._metrics[mode]["entropy"].append(self.accelerator.gather(mean_entropy).nanmean().item()) |
|
|
|
|
|
|
|
|
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0) |
|
|
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0) |
|
|
is_region_clipped = is_low_clipped | is_high_clipped |
|
|
|
|
|
low_clip = masked_batch_mean(is_low_clipped.float()) |
|
|
high_clip = masked_batch_mean(is_high_clipped.float()) |
|
|
clip_ratio = masked_batch_mean(is_region_clipped.float()) |
|
|
|
|
|
gathered_low_clip = self.accelerator.gather(low_clip) |
|
|
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item()) |
|
|
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item()) |
|
|
gathered_high_clip = self.accelerator.gather(high_clip) |
|
|
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item()) |
|
|
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item()) |
|
|
gathered_clip_ratio = self.accelerator.gather(clip_ratio) |
|
|
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item()) |
|
|
return loss |
|
|
|
|
|
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): |
|
|
inputs = self._prepare_inputs(inputs) |
|
|
with torch.no_grad(): |
|
|
with self.compute_loss_context_manager(): |
|
|
loss = self.compute_loss(model, inputs) |
|
|
loss = loss.mean().detach() |
|
|
return loss, None, None |
|
|
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
|
mode = "train" if self.model.training else "eval" |
|
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} |
|
|
|
|
|
|
|
|
|
|
|
if mode == "eval": |
|
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
|
|
logs = {**logs, **metrics} |
|
|
super().log(logs, start_time) |
|
|
self._metrics[mode].clear() |
|
|
|
|
|
if self.accelerator.is_main_process and self.log_completions: |
|
|
if is_rich_available(): |
|
|
print_prompt_completions_sample( |
|
|
self._logs["prompt"], |
|
|
self._logs["completion"], |
|
|
self._logs["rewards"], |
|
|
self._logs["advantages"], |
|
|
self.state.global_step, |
|
|
self.num_completions_to_print, |
|
|
) |
|
|
|
|
|
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None: |
|
|
import pandas as pd |
|
|
|
|
|
table = { |
|
|
"step": [str(self.state.global_step)] * len(self._logs["prompt"]), |
|
|
"prompt": self._logs["prompt"], |
|
|
"completion": self._logs["completion"], |
|
|
**self._logs["rewards"], |
|
|
"advantage": self._logs["advantages"], |
|
|
} |
|
|
|
|
|
if self._logs["images"]: |
|
|
table["images"] = [] |
|
|
for image_list in self._logs["images"]: |
|
|
|
|
|
table["images"].append([wandb.Image(image) for image in image_list]) |
|
|
|
|
|
df = pd.DataFrame(table) |
|
|
if self.wandb_log_unique_prompts: |
|
|
df = df.drop_duplicates(subset=["prompt"]) |
|
|
wandb.log({"completions": wandb.Table(dataframe=df)}) |
|
|
|
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
|
if self.args.hub_model_id is None: |
|
|
model_name = Path(self.args.output_dir).name |
|
|
else: |
|
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
|
self.create_model_card(model_name=model_name) |
|
|
super()._save_checkpoint(model, trial) |
|
|
class UnslothGRPOTrainer(_UnslothGRPOTrainer): |
|
|
""" |
|
|
|
|
|
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the |
|
|
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language |
|
|
Models](https://huggingface.co/papers/2402.03300). |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
from trl import GRPOTrainer |
|
|
|
|
|
dataset = load_dataset("trl-lib/tldr", split="train") |
|
|
def reward_func(completions, **kwargs): |
|
|
# Dummy reward function that rewards completions with more unique letters. |
|
|
return [float(len(set(completion))) for completion in completions] |
|
|
trainer = GRPOTrainer( |
|
|
model="Qwen/Qwen2-0.5B-Instruct", |
|
|
reward_funcs=reward_func, |
|
|
train_dataset=dataset, |
|
|
) |
|
|
|
|
|
trainer.train() |
|
|
``` |
|
|
|
|
|
Args: |
|
|
model (`Union[str, PreTrainedModel]`): |
|
|
Model to be trained. Can be either: |
|
|
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
|
`args.model_init_kwargs`. |
|
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
|
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): |
|
|
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward |
|
|
functions with the prompts and completions and sum the rewards. Can be either: |
|
|
|
|
|
- A single reward function, such as: |
|
|
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the |
|
|
keyword arguments in `args.model_init_kwargs`. |
|
|
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. |
|
|
- A custom reward function: The function is provided with the prompts and the generated completions, |
|
|
plus any additional columns in the dataset. It should return a list of rewards. Custom reward |
|
|
functions can also return `None` when the reward is not applicable to those samples. This is useful |
|
|
for multi-task training where different reward functions apply to different types of samples. When a |
|
|
reward function returns `None` for a sample, that reward function is excluded from the reward |
|
|
calculation for that sample. For more details, see [Using a custom reward |
|
|
function](#using-a-custom-reward-function). |
|
|
|
|
|
The trainer's state is also passed to the reward function. The trainer's state is an instance of |
|
|
[`~transformers.TrainerState`] and can be accessed by accessing the `trainer_state` argument to the |
|
|
reward function's signature. |
|
|
- A list of reward functions, where each item can independently be any of the above types. Mixing different |
|
|
types within the list (e.g., a string model ID and a custom reward function) is allowed. |
|
|
args ([`GRPOConfig`], *optional*): |
|
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
|
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is |
|
|
ignored. The format of the samples can be either: |
|
|
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
|
and content). |
|
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.ProcessorMixin`], *optional*): |
|
|
Processing class used to process the data. The padding side must be set to "left". If `None`, the |
|
|
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A |
|
|
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token, |
|
|
`tokenizer.eos_token` will be used as the default. |
|
|
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*): |
|
|
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: |
|
|
|
|
|
- A single processing class: Used when `reward_funcs` contains only one reward function. |
|
|
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. |
|
|
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is |
|
|
`None`, the tokenizer for the model is automatically loaded using |
|
|
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward |
|
|
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes` |
|
|
are ignored. |
|
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*): |
|
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed |
|
|
in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
|
method. |
|
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): |
|
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your |
|
|
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. |
|
|
peft_config ([`~peft.PeftConfig`], *optional*): |
|
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
|
|
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
model, |
|
|
reward_funcs, |
|
|
args = None, |
|
|
train_dataset = None, |
|
|
eval_dataset = None, |
|
|
processing_class = None, |
|
|
reward_processing_classes = None, |
|
|
callbacks = None, |
|
|
peft_config = None, |
|
|
**kwargs |
|
|
): |
|
|
if args is None: args = UnslothGRPOConfig() |
|
|
use_bf16 = getattr(args, 'bf16', False) |
|
|
if type(use_bf16) is not bool: use_bf16 = False |
|
|
use_fp16 = getattr(args, 'fp16', False) |
|
|
if type(use_fp16) is not bool: use_fp16 = False |
|
|
force_float32 = False |
|
|
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' |
|
|
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): |
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
|
force_float32 = True |
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
|
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) |
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
|
from unsloth_zoo.utils import _get_dtype |
|
|
dtype = _get_dtype(dtype) |
|
|
float16 = dtype == torch.float16 |
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
|
if force_float32: |
|
|
|
|
|
args.fp16 = False |
|
|
args.bf16 = False |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
|
|
|
|
args.fp16 = float16 |
|
|
args.bf16 = not float16 |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
|
args.eval_strategy = 'steps' |
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
|
if ga_steps is not None and ga_steps > 1: |
|
|
from transformers import __version__ as transformers_version |
|
|
if Version(transformers_version) <= Version('4.45.2'): |
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
|
if force_float32: |
|
|
args.bf16_full_eval = False |
|
|
args.fp16_full_eval = False |
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
|
args.bf16_full_eval = True |
|
|
args.fp16_full_eval = False |
|
|
elif not bf16_full_eval and not fp16_full_eval: |
|
|
args.bf16_full_eval = args.bf16 |
|
|
args.fp16_full_eval = args.fp16 |
|
|
_output_logits = False |
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
|
if _output_logits: |
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
|
pass |
|
|
else: |
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
|
max_seq_length = model.max_seq_length |
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
|
if model is not None and hasattr(model, 'for_training'): |
|
|
model.for_training() |
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
|
if 'processing_class' in locals(): |
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
|
other_metrics = [] |
|
|
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs] |
|
|
else: _reward_funcs = reward_funcs |
|
|
for reward_func in _reward_funcs: |
|
|
try: |
|
|
reward_func_name = reward_func.__name__ |
|
|
if True: |
|
|
other_metrics.append(f'rewards/{reward_func_name}/mean') |
|
|
if True: |
|
|
other_metrics.append(f'rewards/{reward_func_name}/std') |
|
|
if False: |
|
|
other_metrics.append(f'rewards/{reward_func_name}') |
|
|
except: pass |
|
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
|
PatchRLStatistics('grpo_trainer', other_metrics) |
|
|
|
|
|
|
|
|
|
|
|
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: |
|
|
if getattr(args, "_n_gpu", 1) != 1: |
|
|
args._n_gpu = 1 |
|
|
if "model" in locals() and hasattr(model, "for_training"): |
|
|
model.for_training() |
|
|
super().__init__( |
|
|
model = model, |
|
|
reward_funcs = reward_funcs, |
|
|
args = args, |
|
|
train_dataset = train_dataset, |
|
|
eval_dataset = eval_dataset, |
|
|
processing_class = processing_class, |
|
|
reward_processing_classes = reward_processing_classes, |
|
|
callbacks = callbacks, |
|
|
peft_config = peft_config,**kwargs) |
|
|
if "model" in locals() and hasattr(model, "for_inference"): |
|
|
model.for_inference() |
|
|
if hasattr(self, 'neftune_hook_handle'): |
|
|
self.neftune_hook_handle.remove() |
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
|
pass |
|
|
if hasattr(self, 'accelerator'): |
|
|
scaler = self.accelerator.scaler |
|
|
current_model = model |
|
|
while hasattr(current_model, 'model'): |
|
|
current_model.accelerator_scaler = scaler |
|
|
current_model = current_model.model |
|
|
current_model.accelerator_scaler = scaler |
|
|
pass |
|
|
if hasattr(self, 'train'): |
|
|
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) |
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if hasattr(logger, "addFilter"): |
|
|
import logging |
|
|
class HideLoggingMessage(logging.Filter): |
|
|
def __init__(self, text): self.text = text |
|
|
def filter(self, x): return not (self.text in x.getMessage()) |
|
|
pass |
|
|
logger.addFilter(HideLoggingMessage("`use_cache=True`")) |
|
|
|
|
|
|