Llama-3_HPLC_Method_Development__Troubleshooting
/
unsloth_compiled_cache
/UnslothOnlineDPOTrainer.py
| """ | |
| 2025.11.3 | |
| 2025.11.2 | |
| 4.57.1 | |
| 0.24.0 | |
| __UNSLOTH_VERSIONING__ | |
| """ | |
| # Unsloth auto generated code | |
| # Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved. | |
| # | |
| # This program is free software: you can redistribute it and/or modify | |
| # it under the terms of the GNU Lesser General Public License as published by | |
| # the Free Software Foundation, either version 3 of the License, or | |
| # (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU General Public License for more details. | |
| # | |
| # You should have received a copy of the GNU Lesser General Public License | |
| # along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable | |
| from trl.trainer.online_dpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, BasePairwiseJudge, BaseTrainer, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FSDP, GenerationConfig, IterableDataset, MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardFunc, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, VLLMClient, apply_chat_template, broadcast_object_list, create_reference_model, disable_dropout_in_model, empty_cache, ensure_master_addr_port, gather_object, is_conversational, is_flash_attn_2_available, is_peft_model, is_vllm_available, jinja2, logger, logging, maybe_apply_chat_template, nn, nullcontext, os, pad, prepare_deepspeed, prepare_fsdp, prepare_peft_model, profiling_context, re, seed_worker, textwrap, torch, truncate_right, unwrap_model_for_generation, version, warnings, wraps, F, apply_chat_template, is_conversational, re, F, FSDP, is_peft_model, nn, nullcontext, os, re, version, F, Optional, PreTrainedModel, Trainer, logger, os, re, torch, F, FSDP, nn, os, re, F, FSDP, nn, re, torch) | |
| import os | |
| from typing import * | |
| from dataclasses import dataclass, field | |
| from packaging.version import Version | |
| import torch | |
| import numpy as np | |
| from contextlib import nullcontext | |
| from torch.nn import functional as F | |
| import inspect | |
| from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling | |
| from transformers.training_args import ParallelMode | |
| # Wrap trainer with padding to right and enable training mode | |
| import functools | |
| from types import MethodType | |
| def prepare_for_training_mode(f): | |
| def wrapper(self, *args, **kwargs): | |
| # Enable training mode | |
| if hasattr(self, 'model') and hasattr(self.model, "for_training"): | |
| self.model.for_training() | |
| output = f(self, *args, **kwargs) | |
| # Return inference mode | |
| if hasattr(self, 'model') and hasattr(self.model, "for_inference"): | |
| self.model.for_inference() | |
| return output | |
| return wrapper | |
| pass | |
| torch_compile_options = { | |
| "epilogue_fusion" : True, | |
| "max_autotune" : False, | |
| "shape_padding" : True, | |
| "trace.enabled" : False, | |
| "triton.cudagraphs" : False, | |
| } | |
| def chunked_selective_log_softmax(logits, index): | |
| # Split into 4 chunks only | |
| chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) | |
| chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) | |
| all_per_token_logps = [] | |
| # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index) | |
| for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): | |
| chunk_logits = chunk_logits.to(torch.float32) | |
| selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) | |
| logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) | |
| per_token_logps = selected_logits - logsumexp_values | |
| all_per_token_logps.append(per_token_logps) | |
| pass | |
| all_per_token_logps = torch.concat(all_per_token_logps) | |
| all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) | |
| return all_per_token_logps | |
| def calculate_pad_tokens_in_prompt( | |
| input_ids: torch.Tensor, | |
| logits_to_keep: int, | |
| pad_token_id: int | |
| ) -> torch.Tensor: | |
| """ | |
| Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens | |
| """ | |
| if logits_to_keep >= input_ids.shape[1]: | |
| raise ValueError("logits_to_keep must be smaller than the sequence length.") | |
| prompt_section = input_ids[:, :-logits_to_keep] | |
| padding_mask = (prompt_section == pad_token_id) | |
| pad_token_counts = padding_mask.sum(dim=1) | |
| return pad_token_counts | |
| def create_completion_attention_mask( | |
| completion_input_ids: torch.Tensor, | |
| left_pad_tokens_per_prompt: torch.Tensor, | |
| max_left_pad: int, | |
| pad_token_id: int | |
| ) -> torch.Tensor: | |
| """ | |
| Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] | |
| Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens | |
| and pad are pad tokens, this function would make a completion mask that would 0 out the pad | |
| and p tokens. so in this example [0,0,0,1,1,1,0,0,0] | |
| """ | |
| batch_size, completion_len = completion_input_ids.shape | |
| device = completion_input_ids.device | |
| num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt | |
| indices = torch.arange(completion_len, device=device).unsqueeze(0) | |
| shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) | |
| non_padding_mask = (completion_input_ids != pad_token_id) | |
| final_mask = shift_mask & non_padding_mask | |
| return final_mask | |
| def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: | |
| """ | |
| Moves all padding tokens in each sequence of a batch to the right. | |
| """ | |
| mask = (tensor != pad_id) | |
| # Must do stable=True since binary mark is unordered | |
| sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) | |
| packed_tensor = torch.gather(tensor, 1, sorted_indices) | |
| return packed_tensor | |
| def align_logprobs_with_mask( | |
| logprob_tensor: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| pad_value: float = 0.0 | |
| ) -> torch.Tensor: | |
| """ | |
| Aligns a log probability tensor with a given attention mask. | |
| """ | |
| device = logprob_tensor.device | |
| batch_size, logprob_seq_len = logprob_tensor.shape | |
| mask_seq_len = attention_mask.shape[1] | |
| padded_logprobs = torch.full( | |
| attention_mask.shape, | |
| fill_value=pad_value, | |
| dtype=logprob_tensor.dtype, | |
| device=device | |
| ) | |
| left_pad_counts = torch.argmax(attention_mask, dim=1) | |
| cols = torch.arange(logprob_seq_len, device=device) | |
| dest_indices = left_pad_counts.unsqueeze(1) + cols | |
| # Create destination row indices | |
| # Shape: [batch_size, logprob_seq_len] | |
| row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices) | |
| # --- 4. Filter out-of-bounds indices and perform assignment --- | |
| # Create a mask to identify only the indices that are within the bounds | |
| # of the target tensor's sequence length. | |
| valid_mask = dest_indices < mask_seq_len | |
| # Use this mask to select only the valid row indices, column indices, | |
| # and the corresponding values from the logprob tensor. | |
| # This flattens the selected elements into 1D tensors. | |
| valid_rows = row_indices[valid_mask] | |
| valid_cols = dest_indices[valid_mask] | |
| valid_vals = logprob_tensor[valid_mask] | |
| # Place the valid values into their correct positions in the padded tensor | |
| # using a single, efficient advanced indexing operation. | |
| padded_logprobs[valid_rows, valid_cols] = valid_vals | |
| return padded_logprobs | |
| def vLLMSamplingParams(**kwargs): | |
| from vllm import SamplingParams | |
| sampling_params = SamplingParams(**kwargs) | |
| sampling_params._set_kwargs = kwargs | |
| return sampling_params | |
| class UnslothOnlineDPOConfig(OnlineDPOConfig): | |
| """ | |
| Configuration class for the [`OnlineDPOTrainer`]. | |
| This class includes only the parameters that are specific to Online DPO training. For a full list of training | |
| arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this | |
| class may differ from those in [`~transformers.TrainingArguments`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| reward_model_path (`str`, *optional*): | |
| Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both. | |
| judge (`str`, *optional*): | |
| Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both. | |
| max_new_tokens (`int`, *optional*, defaults to `64`): | |
| Maximum number of tokens to generate per completion. | |
| max_length (`int`, *optional*, defaults to `256`): | |
| Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the | |
| sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as | |
| possible. | |
| temperature (`float`, *optional*, defaults to `0.9`): | |
| Temperature for sampling. The higher the temperature, the more random the completions. | |
| missing_eos_penalty (`float`, *optional*): | |
| Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage to | |
| generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive | |
| value. This parameter only works when using `reward_funcs` and not when using `judge`. | |
| beta (`float` or `list[float]`, *optional*, defaults to `0.1`): | |
| Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
| reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in | |
| the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is | |
| selected for each new epoch and the last β is used for the rest of the epochs. | |
| loss_type (`str`, *optional*, defaults to `"sigmoid"`): | |
| Type of loss to use. Possible values are: | |
| - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper. | |
| - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper. | |
| dataset_num_proc (`int`, *optional*): | |
| Number of processes to use for processing the dataset. | |
| <Deprecated version="0.22.0"> | |
| This parameter is deprecated and will be removed in version 0.25.0. Since OnlineDPO does not involve | |
| dataset preparation, you can safely remove it. | |
| </Deprecated> | |
| disable_dropout (`bool`, *optional*, defaults to `True`): | |
| Whether to disable dropout in the model and reference model. | |
| > Parameters that control generation | |
| top_p (`float`, *optional*, defaults to `1.0`): | |
| Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to | |
| `1.0` to consider all tokens. | |
| top_k (`int`, *optional*): | |
| Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is | |
| disabled and all tokens are considered. | |
| min_p (`float`, *optional*): | |
| Minimum token probability, which will be scaled by the probability of the most likely token. It must be a | |
| value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range. | |
| repetition_penalty (`float`, *optional*, defaults to `1.0`): | |
| Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. | |
| Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat | |
| tokens. | |
| use_transformers_paged (`bool`, *optional*, defaults to `False`): | |
| Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers` | |
| paged implementation will be used for generation instead of the default padded implementation. This | |
| parameter is only effective when `use_vllm` is set to `False`. | |
| cache_implementation (`str`, *optional*): | |
| Implementation of the cache method for faster generation when `use_vllm` is set to `False`. | |
| generation_kwargs (`dict[str, Any]`, *optional*): | |
| Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or | |
| `SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the | |
| generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict | |
| with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them. | |
| > Parameters that control generation acceleration powered by vLLM | |
| use_vllm (`bool`, *optional*, defaults to `False`): | |
| Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation | |
| instead of the default model.generate(). Requires `vllm` to be installed. | |
| vllm_model_impl (`str`, *optional*, defaults to `"vllm"`): | |
| Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use | |
| the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model | |
| implementation. | |
| vllm_mode (`str`, *optional*, defaults to `"server"`): | |
| Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or | |
| `"colocate"`. | |
| - `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM | |
| server is running (start with `trl vllm-serve`). | |
| - `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a | |
| separate server but may cause resource contention with training. | |
| vllm_guided_decoding_regex (`str`, *optional*): | |
| Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled. | |
| > Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`) | |
| vllm_server_base_url (`str`, *optional*): | |
| Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and | |
| `vllm_server_port` are ignored. | |
| vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`): | |
| Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. | |
| vllm_server_port (`int`, *optional*, defaults to `8000`): | |
| Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. | |
| vllm_server_timeout (`float`, *optional*, defaults to `240.0`): | |
| Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the | |
| timeout, a `ConnectionError` is raised. | |
| > Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`) | |
| vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.55`): | |
| Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to | |
| `"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when | |
| launching the vLLM server via the `--vllm_gpu_memory_utilization` flag. | |
| vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`): | |
| Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to | |
| `"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when | |
| launching the vLLM server via the `--vllm_tensor_parallel_size` flag. | |
| > Other parameters | |
| ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): | |
| This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, | |
| improving generation speed. However, disabling this option allows training models that exceed the VRAM | |
| capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible | |
| with vLLM generation. | |
| model_init_kwargs (`dict[str, Any]`, *optional*): | |
| Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a | |
| string. | |
| """ | |
| vllm_sampling_params: Optional[Any] = field( | |
| default = None, | |
| metadata = {'help': 'vLLM SamplingParams'}, | |
| ) | |
| unsloth_num_chunks : Optional[int] = field( | |
| default = -1, | |
| metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
| ) | |
| max_seq_length : Optional[int] = field( | |
| default = None, | |
| metadata = {'help': 'Maximum sequence length to truncate to.'}, | |
| ) | |
| def __init__( | |
| self, | |
| output_dir = None, | |
| overwrite_output_dir = None, | |
| do_train = False, | |
| do_eval = False, | |
| do_predict = False, | |
| eval_strategy = 'no', | |
| prediction_loss_only = False, | |
| per_device_train_batch_size = 4, | |
| per_device_eval_batch_size = 4, | |
| per_gpu_train_batch_size = None, | |
| per_gpu_eval_batch_size = None, | |
| gradient_accumulation_steps = 2, | |
| eval_accumulation_steps = 2, | |
| eval_delay = 0, | |
| torch_empty_cache_steps = 250, | |
| learning_rate = 5e-05, | |
| weight_decay = 0.01, | |
| adam_beta1 = 0.9, | |
| adam_beta2 = 0.999, | |
| adam_epsilon = 1e-08, | |
| max_grad_norm = 1.0, | |
| num_train_epochs = 3.0, | |
| max_steps = -1, | |
| lr_scheduler_type = 'linear', | |
| warmup_ratio = 0.1, | |
| warmup_steps = 0, | |
| log_level = 'passive', | |
| log_level_replica = 'warning', | |
| log_on_each_node = True, | |
| logging_dir = None, | |
| logging_strategy = 'steps', | |
| logging_first_step = False, | |
| logging_steps = 1, | |
| logging_nan_inf_filter = False, | |
| save_strategy = 'steps', | |
| save_steps = 500, | |
| save_total_limit = None, | |
| save_safetensors = True, | |
| save_on_each_node = False, | |
| save_only_model = False, | |
| restore_callback_states_from_checkpoint = False, | |
| no_cuda = False, | |
| use_cpu = False, | |
| use_mps_device = False, | |
| seed = 3407, | |
| data_seed = 3407, | |
| jit_mode_eval = False, | |
| bf16 = False, | |
| fp16 = False, | |
| fp16_opt_level = 'O1', | |
| half_precision_backend = 'auto', | |
| bf16_full_eval = False, | |
| fp16_full_eval = False, | |
| tf32 = None, | |
| local_rank = -1, | |
| ddp_backend = None, | |
| tpu_num_cores = None, | |
| tpu_metrics_debug = False, | |
| debug = '', | |
| dataloader_drop_last = False, | |
| eval_steps = None, | |
| dataloader_num_workers = 0, | |
| dataloader_prefetch_factor = None, | |
| past_index = -1, | |
| run_name = None, | |
| disable_tqdm = None, | |
| remove_unused_columns = True, | |
| label_names = None, | |
| load_best_model_at_end = False, | |
| metric_for_best_model = None, | |
| greater_is_better = None, | |
| ignore_data_skip = False, | |
| fsdp = None, | |
| fsdp_min_num_params = 0, | |
| fsdp_config = None, | |
| fsdp_transformer_layer_cls_to_wrap = None, | |
| accelerator_config = None, | |
| parallelism_config = None, | |
| deepspeed = None, | |
| label_smoothing_factor = 0.0, | |
| optim = 'adamw_8bit', | |
| optim_args = None, | |
| adafactor = False, | |
| group_by_length = False, | |
| length_column_name = 'length', | |
| report_to = None, | |
| project = 'huggingface', | |
| trackio_space_id = 'trackio', | |
| ddp_find_unused_parameters = None, | |
| ddp_bucket_cap_mb = None, | |
| ddp_broadcast_buffers = None, | |
| dataloader_pin_memory = True, | |
| dataloader_persistent_workers = False, | |
| skip_memory_metrics = True, | |
| use_legacy_prediction_loop = False, | |
| push_to_hub = False, | |
| resume_from_checkpoint = None, | |
| hub_model_id = None, | |
| hub_strategy = 'every_save', | |
| hub_token = None, | |
| hub_private_repo = None, | |
| hub_always_push = False, | |
| hub_revision = None, | |
| gradient_checkpointing = True, | |
| gradient_checkpointing_kwargs = None, | |
| include_inputs_for_metrics = False, | |
| eval_do_concat_batches = True, | |
| fp16_backend = 'auto', | |
| push_to_hub_model_id = None, | |
| push_to_hub_organization = None, | |
| push_to_hub_token = None, | |
| mp_parameters = '', | |
| auto_find_batch_size = False, | |
| full_determinism = False, | |
| torchdynamo = None, | |
| ray_scope = 'last', | |
| ddp_timeout = 1800, | |
| torch_compile = False, | |
| torch_compile_backend = None, | |
| torch_compile_mode = None, | |
| include_tokens_per_second = False, | |
| include_num_input_tokens_seen = False, | |
| neftune_noise_alpha = None, | |
| optim_target_modules = None, | |
| batch_eval_metrics = False, | |
| eval_on_start = False, | |
| use_liger_kernel = False, | |
| liger_kernel_config = None, | |
| eval_use_gather_object = False, | |
| average_tokens_across_devices = True, | |
| reward_model_path = None, | |
| judge = None, | |
| max_new_tokens = 64, | |
| max_length = 512, | |
| temperature = 0.9, | |
| top_p = 1.0, | |
| top_k = None, | |
| min_p = None, | |
| repetition_penalty = 1.0, | |
| generation_kwargs = {}, | |
| use_transformers_paged = False, | |
| cache_implementation = None, | |
| missing_eos_penalty = None, | |
| loss_type = 'sigmoid', | |
| disable_dropout = True, | |
| use_vllm = False, | |
| vllm_model_impl = 'vllm', | |
| vllm_guided_decoding_regex = None, | |
| vllm_gpu_memory_utilization = 0.55, | |
| vllm_mode = 'colocate', | |
| vllm_server_base_url = None, | |
| vllm_server_host = '0.0.0.0', | |
| vllm_server_port = 8000, | |
| vllm_server_timeout = 240.0, | |
| vllm_tensor_parallel_size = 1, | |
| ds3_gather_for_generation = True, | |
| model_init_kwargs = None, | |
| reward_weights = None, | |
| dataset_num_proc = None, | |
| gpu_memory_utilization = None, | |
| vllm_sampling_params = None, | |
| unsloth_num_chunks = -1, | |
| max_seq_length = None, | |
| **kwargs, | |
| ): | |
| if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
| if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
| if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
| output_dir = 'unsloth_training_checkpoints' | |
| save_strategy = 'no' | |
| if dataset_num_proc is None: | |
| from multiprocessing import cpu_count | |
| dataset_num_proc = min(max(cpu_count()+4, 2), 64) | |
| if temperature <= 0: | |
| raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') | |
| elif temperature >= 10: | |
| raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') | |
| super().__init__( | |
| output_dir = output_dir, | |
| overwrite_output_dir = overwrite_output_dir, | |
| do_train = do_train, | |
| do_eval = do_eval, | |
| do_predict = do_predict, | |
| eval_strategy = eval_strategy, | |
| prediction_loss_only = prediction_loss_only, | |
| per_device_train_batch_size = per_device_train_batch_size, | |
| per_device_eval_batch_size = per_device_eval_batch_size, | |
| per_gpu_train_batch_size = per_gpu_train_batch_size, | |
| per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
| gradient_accumulation_steps = gradient_accumulation_steps, | |
| eval_accumulation_steps = eval_accumulation_steps, | |
| eval_delay = eval_delay, | |
| torch_empty_cache_steps = torch_empty_cache_steps, | |
| learning_rate = learning_rate, | |
| weight_decay = weight_decay, | |
| adam_beta1 = adam_beta1, | |
| adam_beta2 = adam_beta2, | |
| adam_epsilon = adam_epsilon, | |
| max_grad_norm = max_grad_norm, | |
| num_train_epochs = num_train_epochs, | |
| max_steps = max_steps, | |
| lr_scheduler_type = lr_scheduler_type, | |
| warmup_ratio = warmup_ratio, | |
| warmup_steps = warmup_steps, | |
| log_level = log_level, | |
| log_level_replica = log_level_replica, | |
| log_on_each_node = log_on_each_node, | |
| logging_dir = logging_dir, | |
| logging_strategy = logging_strategy, | |
| logging_first_step = logging_first_step, | |
| logging_steps = logging_steps, | |
| logging_nan_inf_filter = logging_nan_inf_filter, | |
| save_strategy = save_strategy, | |
| save_steps = save_steps, | |
| save_total_limit = save_total_limit, | |
| save_safetensors = save_safetensors, | |
| save_on_each_node = save_on_each_node, | |
| save_only_model = save_only_model, | |
| restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
| no_cuda = no_cuda, | |
| use_cpu = use_cpu, | |
| use_mps_device = use_mps_device, | |
| seed = seed, | |
| data_seed = data_seed, | |
| jit_mode_eval = jit_mode_eval, | |
| bf16 = bf16, | |
| fp16 = fp16, | |
| fp16_opt_level = fp16_opt_level, | |
| half_precision_backend = half_precision_backend, | |
| bf16_full_eval = bf16_full_eval, | |
| fp16_full_eval = fp16_full_eval, | |
| tf32 = tf32, | |
| local_rank = local_rank, | |
| ddp_backend = ddp_backend, | |
| tpu_num_cores = tpu_num_cores, | |
| tpu_metrics_debug = tpu_metrics_debug, | |
| debug = debug, | |
| dataloader_drop_last = dataloader_drop_last, | |
| eval_steps = eval_steps, | |
| dataloader_num_workers = dataloader_num_workers, | |
| dataloader_prefetch_factor = dataloader_prefetch_factor, | |
| past_index = past_index, | |
| run_name = run_name, | |
| disable_tqdm = disable_tqdm, | |
| remove_unused_columns = remove_unused_columns, | |
| label_names = label_names, | |
| load_best_model_at_end = load_best_model_at_end, | |
| metric_for_best_model = metric_for_best_model, | |
| greater_is_better = greater_is_better, | |
| ignore_data_skip = ignore_data_skip, | |
| fsdp = fsdp, | |
| fsdp_min_num_params = fsdp_min_num_params, | |
| fsdp_config = fsdp_config, | |
| fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
| accelerator_config = accelerator_config, | |
| parallelism_config = parallelism_config, | |
| deepspeed = deepspeed, | |
| label_smoothing_factor = label_smoothing_factor, | |
| optim = optim, | |
| optim_args = optim_args, | |
| adafactor = adafactor, | |
| group_by_length = group_by_length, | |
| length_column_name = length_column_name, | |
| report_to = report_to, | |
| project = project, | |
| trackio_space_id = trackio_space_id, | |
| ddp_find_unused_parameters = ddp_find_unused_parameters, | |
| ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
| ddp_broadcast_buffers = ddp_broadcast_buffers, | |
| dataloader_pin_memory = dataloader_pin_memory, | |
| dataloader_persistent_workers = dataloader_persistent_workers, | |
| skip_memory_metrics = skip_memory_metrics, | |
| use_legacy_prediction_loop = use_legacy_prediction_loop, | |
| push_to_hub = push_to_hub, | |
| resume_from_checkpoint = resume_from_checkpoint, | |
| hub_model_id = hub_model_id, | |
| hub_strategy = hub_strategy, | |
| hub_token = hub_token, | |
| hub_private_repo = hub_private_repo, | |
| hub_always_push = hub_always_push, | |
| hub_revision = hub_revision, | |
| gradient_checkpointing = gradient_checkpointing, | |
| gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
| include_inputs_for_metrics = include_inputs_for_metrics, | |
| eval_do_concat_batches = eval_do_concat_batches, | |
| fp16_backend = fp16_backend, | |
| push_to_hub_model_id = push_to_hub_model_id, | |
| push_to_hub_organization = push_to_hub_organization, | |
| push_to_hub_token = push_to_hub_token, | |
| mp_parameters = mp_parameters, | |
| auto_find_batch_size = auto_find_batch_size, | |
| full_determinism = full_determinism, | |
| torchdynamo = torchdynamo, | |
| ray_scope = ray_scope, | |
| ddp_timeout = ddp_timeout, | |
| torch_compile = torch_compile, | |
| torch_compile_backend = torch_compile_backend, | |
| torch_compile_mode = torch_compile_mode, | |
| include_tokens_per_second = include_tokens_per_second, | |
| include_num_input_tokens_seen = include_num_input_tokens_seen, | |
| neftune_noise_alpha = neftune_noise_alpha, | |
| optim_target_modules = optim_target_modules, | |
| batch_eval_metrics = batch_eval_metrics, | |
| eval_on_start = eval_on_start, | |
| use_liger_kernel = use_liger_kernel, | |
| liger_kernel_config = liger_kernel_config, | |
| eval_use_gather_object = eval_use_gather_object, | |
| average_tokens_across_devices = average_tokens_across_devices, | |
| reward_model_path = reward_model_path, | |
| judge = judge, | |
| max_new_tokens = max_new_tokens, | |
| max_length = max_length, | |
| temperature = temperature, | |
| top_p = top_p, | |
| top_k = top_k, | |
| min_p = min_p, | |
| repetition_penalty = repetition_penalty, | |
| generation_kwargs = generation_kwargs, | |
| use_transformers_paged = use_transformers_paged, | |
| cache_implementation = cache_implementation, | |
| missing_eos_penalty = missing_eos_penalty, | |
| loss_type = loss_type, | |
| disable_dropout = disable_dropout, | |
| use_vllm = use_vllm, | |
| vllm_model_impl = vllm_model_impl, | |
| vllm_guided_decoding_regex = vllm_guided_decoding_regex, | |
| vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, | |
| vllm_mode = vllm_mode, | |
| vllm_server_base_url = vllm_server_base_url, | |
| vllm_server_host = vllm_server_host, | |
| vllm_server_port = vllm_server_port, | |
| vllm_server_timeout = vllm_server_timeout, | |
| vllm_tensor_parallel_size = vllm_tensor_parallel_size, | |
| ds3_gather_for_generation = ds3_gather_for_generation, | |
| model_init_kwargs = model_init_kwargs, | |
| reward_weights = reward_weights, | |
| dataset_num_proc = dataset_num_proc, | |
| gpu_memory_utilization = gpu_memory_utilization,**kwargs) | |
| self.vllm_sampling_params = vllm_sampling_params | |
| self.unsloth_num_chunks = unsloth_num_chunks | |
| self.max_seq_length = max_seq_length | |
| pass | |
| class _UnslothOnlineDPOTrainer(BaseTrainer): | |
| r"""""" | |
| _tag_names = ["trl", "online-dpo"] | |
| _name = "Online DPO" | |
| _paper = { | |
| "title": "Direct Language Model Alignment from Online AI Feedback", | |
| "id": "2402.04792", | |
| # docstyle-ignore | |
| "citation": textwrap.dedent("""\ | |
| @article{guo2024direct, | |
| title = {{Direct Language Model Alignment from Online AI Feedback}}, | |
| author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel}, | |
| year = 2024, | |
| eprint = {arXiv:2402.04792} | |
| }"""), | |
| } | |
| def __init__( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module, str], | |
| ref_model: Union[PreTrainedModel, nn.Module, None] = None, | |
| reward_funcs: Optional[Union[RewardFunc, list[RewardFunc]]] = None, | |
| judge: Optional[BasePairwiseJudge] = None, | |
| args: Optional[OnlineDPOConfig] = None, | |
| data_collator: Optional[DataCollator] = None, | |
| train_dataset: Optional[Union[Dataset, IterableDataset]] = None, | |
| eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, | |
| processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None, | |
| reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, | |
| peft_config: Optional["PeftConfig"] = None, | |
| compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
| # Deprecated parameters | |
| reward_model: Optional[Union[PreTrainedModel, nn.Module]] = None, | |
| reward_processing_class: Optional[PreTrainedTokenizerBase] = None, | |
| ) -> None: | |
| if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'): | |
| if (getattr(args, 'use_vllm', False) == False): | |
| args.use_vllm = True | |
| if not os.environ.get("TRL_EXPERIMENTAL_SILENCE"): | |
| warnings.warn( | |
| "This trainer will soon be moved to trl.experimental and is a candidate for removal. If you rely on " | |
| "it and want it to remain, please share your comments here: " | |
| "https://github.com/huggingface/trl/issues/4223. Silence this warning by setting environment variable " | |
| "TRL_EXPERIMENTAL_SILENCE=1." | |
| ) | |
| if ref_model is model: | |
| raise ValueError( | |
| "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
| "same as `model`, either omit the `ref_model` argument or pass `None`." | |
| ) | |
| self.ref_model = ref_model | |
| # Handle deprecated parameters for backward compatibility | |
| if reward_model is not None: | |
| warnings.warn( | |
| "The `reward_model` parameter is deprecated and will be removed in version 0.25.0. " | |
| "Please use `reward_funcs` instead. For example, change `reward_model=model` to `reward_funcs=model`.", | |
| ) | |
| # Convert old reward_model to new reward_funcs format | |
| if reward_funcs is None: | |
| reward_funcs = reward_model | |
| else: | |
| warnings.warn( | |
| "Both `reward_model` and `reward_funcs` are provided. Using `reward_funcs` and ignoring " | |
| "`reward_model`.", | |
| ) | |
| if reward_processing_class is not None: | |
| warnings.warn( | |
| "The `reward_processing_class` parameter is deprecated and will be removed in version 0.25.0. " | |
| "Please use `reward_processing_classes` instead. For example, change " | |
| "`reward_processing_class=tokenizer` to `reward_processing_classes=tokenizer`.", | |
| ) | |
| # Convert old reward_processing_class to new reward_processing_classes format | |
| if reward_processing_classes is None: | |
| reward_processing_classes = reward_processing_class | |
| else: | |
| warnings.warn( | |
| "Both `reward_processing_class` and `reward_processing_classes` are provided. Using " | |
| "`reward_processing_classes` and ignoring `reward_processing_class`.", | |
| ) | |
| # Validate reward configuration - must have exactly one of: judge, or reward_funcs | |
| reward_configs = sum(x is not None for x in [judge, reward_funcs]) | |
| if reward_configs == 0: | |
| raise ValueError("One of `judge` or `reward_funcs` must be provided.") | |
| elif reward_configs > 1: | |
| if judge is not None: | |
| logger.warning( | |
| "Both `judge` and `reward_funcs` are provided. Using `judge` and ignoring `reward_funcs`.", | |
| UserWarning, | |
| ) | |
| reward_funcs = None | |
| self.judge = judge | |
| # Handle reward_funcs | |
| if reward_funcs is not None: | |
| if not isinstance(reward_funcs, list): | |
| reward_funcs = [reward_funcs] | |
| self.reward_func_names = [] | |
| # Process reward functions [convert strings to models, collect names] | |
| model_init_kwargs = args.model_init_kwargs or {} | |
| for i, reward_func in enumerate(reward_funcs): | |
| if isinstance(reward_func, str): | |
| # Load model from string path | |
| reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( | |
| reward_func, num_labels=1, **model_init_kwargs | |
| ) | |
| if isinstance(reward_funcs[i], nn.Module): | |
| self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) | |
| else: | |
| self.reward_func_names.append(reward_funcs[i].__name__) | |
| self.reward_funcs = reward_funcs | |
| # Handle reward processing classes for reward_funcs | |
| if reward_processing_classes is None: | |
| reward_processing_classes = [None] * len(reward_funcs) | |
| elif not isinstance(reward_processing_classes, list): | |
| reward_processing_classes = [reward_processing_classes] | |
| else: | |
| if len(reward_processing_classes) != len(reward_funcs): | |
| raise ValueError( | |
| "The number of reward processing classes must match the number of reward functions." | |
| ) | |
| self.reward_processing_classes = [] | |
| for reward_processing_class_i, reward_func in zip(reward_processing_classes, reward_funcs): | |
| if isinstance(reward_func, PreTrainedModel): | |
| if reward_processing_class_i is None: | |
| reward_processing_class_i = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) | |
| if reward_processing_class_i.pad_token_id is None: | |
| reward_processing_class_i.pad_token = reward_processing_class_i.eos_token | |
| # Set pad token ID on reward model config | |
| reward_func.config.pad_token_id = reward_processing_class_i.pad_token_id | |
| self.reward_processing_classes.append(reward_processing_class_i) | |
| else: | |
| self.reward_funcs = None | |
| self.reward_func_names = [] | |
| self.reward_processing_classes = [] | |
| # Handle reward_weights | |
| if reward_funcs is not None: | |
| if args.reward_weights is not None: | |
| if len(args.reward_weights) != len(self.reward_funcs): | |
| raise ValueError( | |
| f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " | |
| f"functions ({len(self.reward_funcs)})" | |
| ) | |
| self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) | |
| else: | |
| self.reward_weights = torch.ones(len(self.reward_funcs), dtype=torch.float32) | |
| else: | |
| self.reward_weights = None | |
| if args.missing_eos_penalty is not None and reward_funcs is None and judge is None: | |
| # Check if this is the old reward_model case | |
| if reward_model is not None: | |
| logger.warning( | |
| "The `missing_eos_penalty` parameter is deprecated when used with the deprecated `reward_model` parameter. " | |
| "Please use `reward_funcs` instead of `reward_model` to continue using this feature.", | |
| FutureWarning, | |
| stacklevel=2, | |
| ) | |
| else: | |
| raise ValueError("`missing_eos_penalty` is only supported when `reward_funcs` is provided.") | |
| if args is None: | |
| raise ValueError("`args` must be provided.") | |
| # Check that the processing_class is provided | |
| if processing_class is None: | |
| raise ValueError("`processing_class` must be provided.") | |
| model_init_kwargs = args.model_init_kwargs or {} | |
| if isinstance(model, str): | |
| model_id = model | |
| # Handle dtype in model_init_kwargs | |
| dtype = model_init_kwargs.get("dtype") | |
| if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None: | |
| pass | |
| elif isinstance(dtype, str): | |
| dtype = getattr(torch, dtype) | |
| model_init_kwargs["dtype"] = dtype | |
| else: | |
| raise ValueError( | |
| "Invalid `dtype` passed to `OnlineDPOConfig`. Expected either 'auto' or a string " | |
| f"representing a `torch.dtype` (e.g., 'float32'), but got {dtype}." | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) | |
| else: | |
| if args.model_init_kwargs is not None: | |
| raise ValueError( | |
| "You passed `model_init_kwargs` to the `OnlineDPOConfig`, but your model is already instantiated. " | |
| "This argument can only be used when the `model` argument is a string." | |
| ) | |
| self.is_encoder_decoder = model.config.is_encoder_decoder | |
| self.is_vision_model = model.config.model_type in MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.keys() | |
| if False: | |
| model = prepare_peft_model(model, peft_config, args) | |
| # Enable gradient checkpointing if requested | |
| if args.gradient_checkpointing: | |
| model = self._enable_gradient_checkpointing(model, args) | |
| # Disable dropout in the model and reference model | |
| if args.disable_dropout: | |
| disable_dropout_in_model(model) | |
| if self.ref_model is not None: | |
| disable_dropout_in_model(self.ref_model) | |
| # Handle the ref_model | |
| # Usually, the user wants the ref model to be the initial version of the model. When using PEFT, it's easy to | |
| # get the ref model, as it's just the model with a disabled adapter. When not using PEFT, we need to create | |
| # the ref model from the model by copying it and disable the gradients and set it in evaluation mode. | |
| if ref_model is None: # No ref model provided, the most common case | |
| if False: | |
| self.ref_model = create_reference_model(model) # copy, disable gradients, set eval mode | |
| else: | |
| self.ref_model = None # we don't need a ref model here, we can just disable the adapter. | |
| else: # rare case, the user provided a ref model | |
| self.ref_model = ref_model | |
| self.ref_model.eval() | |
| # Disable the gradient and set the reward model in eval mode | |
| if reward_funcs is not None: | |
| for reward_func in reward_funcs: | |
| if isinstance(reward_func, PreTrainedModel): | |
| reward_func.eval() | |
| self.max_length = args.max_length | |
| self.stats = { | |
| "objective/kl": [], | |
| "objective/entropy": [], | |
| "objective/non_score_reward": [], | |
| "rewards/chosen": [], | |
| "rewards/rejected": [], | |
| "rewards/accuracies": [], | |
| "rewards/margins": [], | |
| "logps/chosen": [], | |
| "logps/rejected": [], | |
| "val/contain_eos_token": [], | |
| "beta": [], | |
| } | |
| if self.reward_funcs is not None: | |
| self.stats["objective/rlhf_reward"] = [] | |
| self.stats["objective/scores_margin"] = [] | |
| self.stats["objective/scores"] = [] | |
| # Store generation parameters for later use | |
| self.use_vllm = args.use_vllm | |
| self.num_generations = 2 # Generate 2 completions per prompt for Online DPO | |
| self.temperature = args.temperature | |
| self.top_p = args.top_p | |
| self.top_k = args.top_k | |
| self.min_p = args.min_p | |
| self.repetition_penalty = args.repetition_penalty | |
| self.use_transformers_paged = args.use_transformers_paged | |
| self.vllm_mode = args.vllm_mode if args.use_vllm else None | |
| self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization | |
| self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size | |
| self.vllm_model_impl = args.vllm_model_impl | |
| # Handle pad token for processors or tokenizers | |
| if isinstance(processing_class, ProcessorMixin): | |
| tokenizer = processing_class.tokenizer | |
| elif isinstance(processing_class, PreTrainedTokenizerBase): | |
| tokenizer = processing_class | |
| else: | |
| raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`") | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| self.pad_token = tokenizer.pad_token | |
| self.pad_token_id = tokenizer.pad_token_id | |
| self.eos_token_id = tokenizer.eos_token_id | |
| # Vision tokens for VLM support | |
| self.image_token_id = getattr(processing_class, "image_token_id", None) | |
| self.vision_start_token_id = getattr(processing_class, "vision_start_token_id", None) | |
| self.vision_end_token_id = getattr(processing_class, "vision_end_token_id", None) | |
| # Get the image token string for token collapsing | |
| self.image_token = None | |
| if self.image_token_id is not None: | |
| self.image_token = tokenizer.decode([self.image_token_id]) | |
| # Define the collator if not provided | |
| if data_collator is None: | |
| data_collator = DPODataCollatorWithPadding(pad_token_id=self.pad_token_id) | |
| # The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the | |
| # input tensor associated with the key "input_ids". However, in Online DPO, the sampled data does not include | |
| # the "input_ids" key. As a result, the trainer issues the warning: "Could not estimate the number of tokens | |
| # of the input, floating-point operations will not be computed." To suppress this warning, we set the | |
| # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate | |
| # that the warning has already been issued. | |
| model.warnings_issued["estimate_tokens"] = True | |
| super().__init__( | |
| model=model, | |
| args=args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| processing_class=processing_class, | |
| compute_metrics=compute_metrics, | |
| callbacks=callbacks, | |
| optimizers=optimizers, | |
| preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
| ) | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| self._beta = args.beta | |
| # Set up generation configuration and vLLM after super[].__init__ | |
| if self.use_vllm: | |
| if not is_vllm_available(): | |
| raise ImportError( | |
| "vLLM is not available and `use_vllm` is set to True. Please install vLLM with " | |
| "`pip install trl[vllm]` to use it." | |
| ) | |
| if self.vllm_mode == "server": | |
| if self.accelerator.is_main_process: | |
| if args.vllm_server_base_url is not None: | |
| base_url = args.vllm_server_base_url | |
| else: | |
| base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" | |
| self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) | |
| self.vllm_client.init_communicator(device=torch.cuda.current_device()) | |
| else: | |
| self.vllm_client = None | |
| elif self.vllm_mode == "colocate": | |
| vllm_kwargs = { | |
| "model": model.name_or_path, | |
| "tensor_parallel_size": self.vllm_tensor_parallel_size, | |
| "gpu_memory_utilization": self.vllm_gpu_memory_utilization, | |
| "model_impl": self.vllm_model_impl, | |
| "max_num_seqs": self.args.per_device_train_batch_size * self.vllm_tensor_parallel_size, | |
| "max_model_len": args.max_length + args.max_new_tokens, | |
| "distributed_executor_backend": "external_launcher", | |
| "seed": self.accelerator.process_index // self.vllm_tensor_parallel_size, | |
| "max_num_batched_tokens": 4096, | |
| } | |
| os.environ["RANK"] = str(self.accelerator.process_index) | |
| os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index) | |
| os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes) | |
| ensure_master_addr_port() | |
| self.llm = model.vllm_engine | |
| else: | |
| raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.") | |
| self.guided_decoding_regex = args.vllm_guided_decoding_regex | |
| self._last_loaded_step = -1 | |
| generation_params = { | |
| "n": 2, | |
| "repetition_penalty": self.repetition_penalty, | |
| "temperature": self.temperature, | |
| "top_p": self.top_p, | |
| "top_k": -1 if self.top_k is None else self.top_k, | |
| "min_p": 0.0 if self.min_p is None else self.min_p, | |
| "max_tokens": args.max_new_tokens, | |
| "detokenize": False, | |
| } | |
| if args.generation_kwargs is not None: | |
| generation_params.update(args.generation_kwargs) | |
| if self.guided_decoding_regex: | |
| generation_params["guided_decoding"] = GuidedDecodingParams(regex=self.guided_decoding_regex) | |
| self.generation_config = SamplingParams(**generation_params) | |
| self.accelerator.wait_for_everyone() | |
| else: | |
| # Set up transformers generation config | |
| generation_kwargs = { | |
| "max_new_tokens": args.max_new_tokens, | |
| "do_sample": True, | |
| "pad_token_id": self.pad_token_id, | |
| "bos_token_id": tokenizer.bos_token_id, | |
| "eos_token_id": self.eos_token_id, | |
| "temperature": self.temperature, | |
| "top_k": self.top_k, | |
| "top_p": self.top_p, | |
| "repetition_penalty": self.repetition_penalty, | |
| "use_cache": True if not self.args.gradient_checkpointing else False, | |
| } | |
| # Add min_p if supported | |
| if self.min_p is not None: | |
| generation_kwargs["min_p"] = self.min_p | |
| if args.generation_kwargs is not None: | |
| generation_kwargs.update(args.generation_kwargs) | |
| # Remove None values | |
| generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None} | |
| self.generation_config = GenerationConfig(**generation_kwargs) | |
| if self.ref_model is not None: | |
| if self.is_deepspeed_enabled: | |
| self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) | |
| elif self.is_fsdp_enabled: | |
| self.ref_model = prepare_fsdp(self.ref_model, self.accelerator) | |
| else: | |
| self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
| if self.reward_funcs is not None: | |
| for i, reward_func in enumerate(self.reward_funcs): | |
| if isinstance(reward_func, PreTrainedModel): | |
| if self.is_deepspeed_enabled: | |
| self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) | |
| else: | |
| # set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp | |
| self.reward_funcs[i] = self.accelerator.prepare_model( | |
| reward_func, evaluation_mode=True, device_placement=True | |
| ) | |
| def beta(self): | |
| if isinstance(self._beta, list): | |
| epoch = self.state.epoch | |
| return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1] | |
| else: | |
| return self._beta | |
| def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]: | |
| """Tokenize a single row from a DPO specific dataset.""" | |
| if not is_encoder_decoder: | |
| batch = tokenizer(feature["prompt"], add_special_tokens=False) | |
| # Add BOS token to head of prompt. Avoid adding if it's already there | |
| if tokenizer.bos_token_id is not None: | |
| prompt_len_input_ids = len(batch["input_ids"]) | |
| if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]: | |
| batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"] | |
| batch["attention_mask"] = [1] + batch["attention_mask"] | |
| else: | |
| batch = tokenizer(feature["prompt"], add_special_tokens=True) | |
| batch = {f"prompt_{key}": value for key, value in batch.items()} | |
| return batch | |
| # Same as Trainer.get_train_dataloader but skip the "remove_unused_columns". | |
| def get_train_dataloader(self) -> DataLoader: | |
| if self.train_dataset is None: | |
| raise ValueError("Trainer: training requires a train_dataset.") | |
| train_dataset = self.train_dataset | |
| data_collator = self.data_collator | |
| dataloader_params = { | |
| "batch_size": self._train_batch_size, | |
| "collate_fn": data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "persistent_workers": self.args.dataloader_persistent_workers, | |
| } | |
| if not isinstance(train_dataset, torch.utils.data.IterableDataset): | |
| dataloader_params["sampler"] = self._get_train_sampler() | |
| dataloader_params["drop_last"] = self.args.dataloader_drop_last | |
| dataloader_params["worker_init_fn"] = seed_worker | |
| dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor | |
| return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) | |
| # Same as Trainer.get_eval_dataloader but skip the "remove_unused_columns". | |
| def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: | |
| if eval_dataset is None and self.eval_dataset is None: | |
| raise ValueError("Trainer: evaluation requires an eval_dataset.") | |
| # If we have persistent workers, don't do a fork bomb especially as eval datasets | |
| # don't change during training | |
| dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" | |
| if ( | |
| hasattr(self, "_eval_dataloaders") | |
| and dataloader_key in self._eval_dataloaders | |
| and self.args.dataloader_persistent_workers | |
| ): | |
| return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) | |
| eval_dataset = ( | |
| self.eval_dataset[eval_dataset] | |
| if isinstance(eval_dataset, str) | |
| else eval_dataset | |
| if eval_dataset is not None | |
| else self.eval_dataset | |
| ) | |
| data_collator = self.data_collator | |
| dataloader_params = { | |
| "batch_size": self.args.eval_batch_size, | |
| "collate_fn": data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "persistent_workers": self.args.dataloader_persistent_workers, | |
| } | |
| if not isinstance(eval_dataset, torch.utils.data.IterableDataset): | |
| dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) | |
| dataloader_params["drop_last"] = self.args.dataloader_drop_last | |
| dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor | |
| # accelerator.free_memory() will destroy the references, so | |
| # we need to store the non-prepared version | |
| eval_dataloader = DataLoader(eval_dataset, **dataloader_params) | |
| if self.args.dataloader_persistent_workers: | |
| if hasattr(self, "_eval_dataloaders"): | |
| self._eval_dataloaders[dataloader_key] = eval_dataloader | |
| else: | |
| self._eval_dataloaders = {dataloader_key: eval_dataloader} | |
| return self.accelerator.prepare(eval_dataloader) | |
| def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: OnlineDPOConfig) -> PreTrainedModel: | |
| """Enables gradient checkpointing for the model.""" | |
| # Ensure use_cache is disabled | |
| model.config.use_cache = False | |
| # Enable gradient checkpointing on the base model for PEFT | |
| if is_peft_model(model): | |
| model.base_model.gradient_checkpointing_enable() | |
| # Enable gradient checkpointing for non-PEFT models | |
| else: | |
| model.gradient_checkpointing_enable() | |
| gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} | |
| use_reentrant = ( | |
| "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] | |
| ) | |
| if use_reentrant: | |
| model.enable_input_require_grads() | |
| return model | |
| def _generate_vllm(self, prompts, images=None): | |
| eos_token_id = self.eos_token_id | |
| pad_token_id = self.pad_token_id | |
| # Generate completion_ids and prompt_ids based on mode | |
| if self.vllm_mode == "server": | |
| completion_ids, prompt_ids = self._generate_vllm_server(prompts, images) | |
| elif self.vllm_mode == "colocate": | |
| completion_ids, prompt_ids = self._generate_vllm_colocate(prompts, images) | |
| # Shared padding, masking, and tensor conversion logic | |
| max_prompt_length = max(len(ids) for ids in prompt_ids) | |
| prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids] | |
| prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids] | |
| max_tokens = self.generation_config.max_tokens | |
| completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids] | |
| completion_ids = [ | |
| ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids | |
| for ids in completion_ids | |
| ] | |
| completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids] | |
| # Convert to tensors | |
| prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device) | |
| prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device) | |
| completion_ids = torch.tensor(completion_ids, device=self.accelerator.device) | |
| completion_mask = torch.tensor(completion_mask, device=self.accelerator.device) | |
| return prompt_ids, prompt_mask, completion_ids, completion_mask | |
| def _generate_vllm_server(self, prompts, images=None): | |
| """Generate completions using vLLM server mode""" | |
| has_images = images is not None | |
| # Update vLLM server weights if needed | |
| if hasattr(self, "_last_loaded_step") and self.state.global_step != self._last_loaded_step: | |
| self._move_model_to_vllm() | |
| self._last_loaded_step = self.state.global_step | |
| elif not hasattr(self, "_last_loaded_step"): | |
| self._move_model_to_vllm() | |
| self._last_loaded_step = self.state.global_step | |
| # Apply chat template if conversational | |
| if is_conversational({"prompt": prompts[0]}): | |
| prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts] | |
| else: | |
| prompts_text = prompts | |
| # Gather all prompts to main process | |
| all_prompts = gather_object(prompts_text) | |
| if has_images: | |
| all_images = gather_object(images) | |
| if self.accelerator.is_main_process: | |
| # Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate | |
| # num_generations outputs for each one. This is faster than generating outputs for each duplicate | |
| # prompt individually. | |
| ordered_set_of_prompts = all_prompts[:: self.num_generations] | |
| if has_images: | |
| ordered_set_of_images = all_images[:: self.num_generations] | |
| else: | |
| ordered_set_of_images = None | |
| completion_ids = self.vllm_client.generate( | |
| prompts=ordered_set_of_prompts, | |
| images=ordered_set_of_images, | |
| n=self.num_generations, | |
| repetition_penalty=self.repetition_penalty, | |
| temperature=self.temperature, | |
| top_p=self.top_p, | |
| top_k=-1 if self.top_k is None else self.top_k, | |
| min_p=0.0 if self.min_p is None else self.min_p, | |
| max_tokens=self.generation_config.max_tokens, | |
| guided_decoding_regex=self.guided_decoding_regex if hasattr(self, "guided_decoding_regex") else None, | |
| generation_kwargs=self.args.generation_kwargs, | |
| ) | |
| # Flatten: each prompt generates 2 completions | |
| completion_ids = [[comp_id] for prompt_completions in completion_ids for comp_id in prompt_completions] | |
| else: | |
| completion_ids = [None] * (len(all_prompts) * 2) | |
| # Broadcast completions to all processes | |
| completion_ids = broadcast_object_list(completion_ids, from_process=0) | |
| # Each process takes its slice | |
| process_slice = slice( | |
| self.accelerator.process_index * len(prompts) * 2, | |
| (self.accelerator.process_index + 1) * len(prompts) * 2, | |
| ) | |
| completion_ids = completion_ids[process_slice] | |
| # Create prompt_ids by tokenizing locally | |
| prompt_inputs = self.processing_class( | |
| text=prompts_text, | |
| return_tensors="pt", | |
| padding=True, | |
| padding_side="left", | |
| add_special_tokens=False, | |
| ) | |
| prompt_ids = [] | |
| for prompt_tokens in prompt_inputs["input_ids"]: | |
| prompt_ids.extend([prompt_tokens.tolist(), prompt_tokens.tolist()]) # 2 copies for 2 completions | |
| return completion_ids, prompt_ids | |
| def _generate_vllm_colocate(self, prompts, images=None): | |
| """Generate completions using vLLM colocate mode""" | |
| # Update model weights if needed - only after gradient accumulation completes | |
| if self.state.global_step != self._last_loaded_step: | |
| self._move_model_to_vllm() | |
| self._last_loaded_step = self.state.global_step | |
| # Apply chat template if conversational | |
| if is_conversational({"prompt": prompts[0]}): | |
| prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts] | |
| else: | |
| prompts_text = prompts | |
| # Prepare vLLM inputs with images if available | |
| if images is not None: | |
| vllm_inputs = [] | |
| for prompt, image in zip(prompts_text, images): | |
| if image is not None: | |
| vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}}) | |
| else: | |
| vllm_inputs.append(prompt) | |
| else: | |
| vllm_inputs = prompts_text | |
| outputs = self.llm.generate(vllm_inputs, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) | |
| completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs] | |
| prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs] | |
| return completion_ids, prompt_ids | |
| def _move_model_to_vllm(self): | |
| """Synchronize model weights to vLLM server with support for PEFT, DeepSpeed, and FSDP""" | |
| # For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations | |
| deepspeed_plugin = self.accelerator.state.deepspeed_plugin | |
| zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3 | |
| if zero_stage_3: | |
| import deepspeed | |
| gather_if_zero3 = deepspeed.zero.GatheredParameters | |
| else: | |
| gather_if_zero3 = nullcontext | |
| if is_peft_model(self.model): | |
| # With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as | |
| # merging adapters in a sharded manner is not supported. | |
| # TODO: does this work with FSDP? | |
| with gather_if_zero3(list(self.model.parameters())): | |
| self.model.merge_adapter() | |
| # Update vLLM weights while parameters are gathered | |
| if self.is_fsdp_enabled: # note if using FSDP, gather_if_zero3 is nullcontext | |
| # Update vLLM weights while parameters are gathered | |
| # For PEFT with FSDP we need to use the memory efficient post-order traversal | |
| fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) | |
| fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 | |
| if fsdp_version == 1: | |
| # use memory-efficient post-order traversal for FSDP | |
| self._sync_fsdp1_params_to_vllm(self.model) | |
| elif fsdp_version == 2: | |
| self._sync_fsdp2_params_to_vllm(self.model) | |
| else: | |
| # DeepSpeed ZeRO-3 with PEFT | |
| for name, param in self.model.named_parameters(): | |
| # When using PEFT, we need to recover the original parameter name and discard some parameters | |
| name = name.removeprefix("base_model.model.").replace(".base_layer", "") | |
| if self.model.prefix in name: | |
| continue | |
| # When module to save, remove its prefix and discard the original module | |
| if "original_module" in name: | |
| continue | |
| name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."]) | |
| if self.vllm_mode == "server" and self.accelerator.is_main_process: | |
| self.vllm_client.update_named_param(name, param.data) | |
| elif self.vllm_mode == "colocate": | |
| pass | |
| pass | |
| # Unmerge adapters while parameters are still gathered | |
| self.model.unmerge_adapter() | |
| # Parameters will automatically be repartitioned when exiting the context | |
| else: | |
| # For non-PEFT models, simply gather (if needed) and update each parameter individually. | |
| if self.is_fsdp_enabled: | |
| fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) | |
| fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 | |
| if fsdp_version == 1: | |
| self._sync_fsdp1_params_to_vllm(self.model) # use memory-efficient post-order traversal for FSDP | |
| elif fsdp_version == 2: | |
| self._sync_fsdp2_params_to_vllm(self.model) | |
| else: | |
| for name, param in self.model.named_parameters(): | |
| name = self._fix_param_name_to_vllm(name) | |
| with gather_if_zero3([param]): | |
| if self.vllm_mode == "server" and self.accelerator.is_main_process: | |
| self.vllm_client.update_named_param(name, param.data) | |
| elif self.vllm_mode == "colocate": | |
| pass | |
| pass | |
| # Reset cache on vLLM | |
| if self.vllm_mode == "server" and self.accelerator.is_main_process: | |
| self.vllm_client.reset_prefix_cache() | |
| elif self.vllm_mode == "colocate": | |
| self.llm.reset_prefix_cache() | |
| def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): | |
| """Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" | |
| # For FSDP1, we need to recurse into children and also use summon_full_params | |
| if visited is None: | |
| visited = set() | |
| for child_name, child_module in module.named_children(): | |
| child_prefix = f"{prefix}.{child_name}" if prefix else child_name | |
| self._sync_fsdp1_params_to_vllm( | |
| child_module, prefix=child_prefix, visited=visited | |
| ) # recurse into the child | |
| if isinstance(module, FSDP): | |
| with FSDP.summon_full_params(module, recurse=False, writeback=False): | |
| for param_name, param in module.named_parameters(): | |
| full_name = f"{prefix}.{param_name}" if prefix else param_name | |
| full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."]) | |
| if full_name in visited: | |
| continue # skip FSDP subtrees already traversed | |
| visited.add(full_name) | |
| if self.vllm_mode == "server" and self.accelerator.is_main_process: | |
| self.vllm_client.update_named_param(full_name, param.data) | |
| elif self.vllm_mode == "colocate": | |
| pass | |
| pass | |
| def _sync_fsdp2_params_to_vllm(self, module: nn.Module): | |
| # For FSDP2, module already covers all parameters, so no need for recursion | |
| for name, param in module.items(): | |
| if param.is_cpu: | |
| param = param.to(torch.device("cuda")) | |
| param = param.full_tensor() | |
| if self.vllm_mode == "server" and self.accelerator.is_main_process: | |
| self.vllm_client.update_named_param(name, param) | |
| elif self.vllm_mode == "colocate": | |
| pass | |
| pass | |
| def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None): | |
| """Clean parameter names for vLLM compatibility""" | |
| extra_prefixes = extra_prefixes or [] | |
| prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes | |
| for prefix in prefixes: | |
| name = name.replace(prefix, "") | |
| return name | |
| def process_vision_row( | |
| self, features: dict[str, Union[list, torch.Tensor]], processing_class=None | |
| ) -> dict[str, list[int]]: | |
| """ | |
| Process a vision row for VLM models (adapted from DPO trainer) | |
| """ | |
| processor = processing_class or self.processing_class | |
| processed_features = processor(images=[features["image"]], text=features["prompt"], add_special_tokens=False) | |
| prompt_input_ids = processed_features["input_ids"][0] | |
| # Create the output dict with required fields | |
| output = { | |
| "prompt_input_ids": prompt_input_ids, | |
| "prompt_attention_mask": processed_features["attention_mask"][0], | |
| } | |
| # Add vision-specific fields | |
| if "pixel_values" in processed_features: | |
| output["pixel_values"] = processed_features["pixel_values"][0] | |
| if "pixel_attention_mask" in processed_features: | |
| output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0] | |
| if "image_sizes" in processed_features: | |
| output["image_sizes"] = processed_features["image_sizes"][0] | |
| return output | |
| def _generate(self, model, prompts, images=None): | |
| """Generate completions using the model""" | |
| device = next(model.parameters()).device | |
| eos_token_id = self.eos_token_id | |
| pad_token_id = self.pad_token_id | |
| # Apply chat template and tokenize the input | |
| inputs = [{"prompt": prompt} for prompt in prompts] | |
| # Add images if provided (VLM support) | |
| if images is not None: | |
| for i, image in enumerate(images): | |
| inputs[i]["image"] = image | |
| # Apply chat template to get text prompts | |
| prompts_text = [maybe_apply_chat_template(x, self.processing_class)["prompt"] for x in inputs] | |
| # Handle image token collapsing/removal | |
| # The chat template sometimes inserts a single image token into the prompt text. However, when this text is | |
| # later tokenized, the single image token string is expanded into multiple image token IDs, depending on the | |
| # image size. We need to handle this properly. | |
| if self.image_token is not None and images is not None: | |
| escaped_img_token = re.escape(self.image_token) | |
| # Search for the image token in the chat template | |
| if hasattr(self.processing_class, "chat_template") and self.processing_class.chat_template: | |
| if re.search(escaped_img_token, self.processing_class.chat_template): | |
| # Collapse repeated image tokens back into a single token | |
| prompts_text = [ | |
| re.sub(rf"({escaped_img_token})+", self.image_token, text) for text in prompts_text | |
| ] | |
| else: | |
| # If the chat template doesn't use the image token, remove all instances | |
| if self.vision_end_token_id is not None: | |
| escaped_eoi_token = re.escape( | |
| self.processing_class.tokenizer.decode([self.vision_end_token_id]) | |
| ) | |
| prompts_text = [ | |
| re.sub(rf"({escaped_img_token})+{escaped_eoi_token}", "", text) for text in prompts_text | |
| ] | |
| else: | |
| # If vision_end_token_id is None, just remove the image tokens | |
| prompts_text = [re.sub(rf"({escaped_img_token})+", "", text) for text in prompts_text] | |
| # Prepare kwargs for processing class | |
| kwargs = {} | |
| if images is not None: | |
| kwargs = {"images": [[img] for img in images]} | |
| # Process inputs using the processing class (handles both VLM and LLM) | |
| prompt_inputs = self.processing_class( | |
| text=prompts_text, | |
| return_tensors="pt", | |
| padding=True, | |
| padding_side="left", | |
| add_special_tokens=False, | |
| **kwargs, | |
| ) | |
| prompt_inputs = {k: v.to(device) for k, v in prompt_inputs.items()} | |
| # Convert vision inputs to model's dtype for proper computation | |
| if "pixel_values" in prompt_inputs: | |
| # Handle DataParallel wrapped models | |
| model_dtype = getattr(model, "dtype", None) | |
| if model_dtype is None and hasattr(model, "module"): | |
| model_dtype = model.module.dtype | |
| if model_dtype is not None: | |
| prompt_inputs["pixel_values"] = prompt_inputs["pixel_values"].to(model_dtype) | |
| # Sample 2 completions per prompt of size `max_new_tokens` from the model | |
| prompt_ids = prompt_inputs["input_ids"].repeat(2, 1) | |
| prompt_mask = prompt_inputs["attention_mask"].repeat(2, 1) | |
| # Prepare vision inputs if available | |
| vision_generation_kwargs = {} | |
| if self.is_vision_model and images is not None: | |
| if "pixel_values" in prompt_inputs: | |
| vision_generation_kwargs["pixel_values"] = prompt_inputs["pixel_values"].repeat(2, 1, 1, 1) | |
| if "pixel_attention_mask" in prompt_inputs: | |
| vision_generation_kwargs["pixel_attention_mask"] = prompt_inputs["pixel_attention_mask"].repeat(2, 1) | |
| if "image_sizes" in prompt_inputs: | |
| vision_generation_kwargs["image_sizes"] = prompt_inputs["image_sizes"].repeat(2, 1) | |
| if "image_grid_thw" in prompt_inputs: | |
| vision_generation_kwargs["image_grid_thw"] = prompt_inputs["image_grid_thw"].repeat(2, 1) | |
| if self.use_transformers_paged: | |
| previous_attn = self.model_wrapped.config._attn_implementation | |
| if is_flash_attn_2_available(): | |
| self.model_wrapped.config._attn_implementation = "paged_attention" | |
| else: | |
| self.model_wrapped.config._attn_implementation = "sdpa_paged" | |
| with ( | |
| profiling_context(self, "transformers.generate_batch"), | |
| unwrap_model_for_generation( | |
| model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model, | |
| torch.no_grad(), | |
| FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), | |
| ): | |
| # Cast to the appropriate dtype based on training configuration | |
| if self.args.bf16: | |
| unwrapped_model.to(torch.bfloat16) | |
| elif self.args.fp16: | |
| unwrapped_model.to(torch.float16) | |
| with torch.inference_mode(): | |
| all_outputs = unwrapped_model.generate_batch( | |
| prompt_ids.tolist(), | |
| generation_config=self.generation_config, | |
| progress_bar=False, | |
| ) | |
| unwrapped_model.train() # restore training mode, as generate_batch forces eval mode | |
| completion_ids = [output.generated_tokens for output in all_outputs.values()] | |
| completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] | |
| completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right") | |
| prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) | |
| # Restore the original attention implementation, training mode | |
| self.model_wrapped.config._attn_implementation = previous_attn | |
| # Extract completion_ids and create completion_mask | |
| prompt_length = prompt_ids.size(1) | |
| completion_ids = prompt_completion_ids[:, prompt_length:] | |
| completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) | |
| return prompt_ids, prompt_mask, completion_ids, completion_mask | |
| else: | |
| # Regular generation path | |
| with ( | |
| profiling_context(self, "transformers.generate"), | |
| unwrap_model_for_generation( | |
| model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model, | |
| torch.no_grad(), | |
| FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), | |
| ): | |
| # Setup cache implementation if specified | |
| if self.args.cache_implementation is not None: | |
| unwrapped_model.generation_config.cache_implementation = self.args.cache_implementation | |
| # Standard generation | |
| output = unwrapped_model.generate( | |
| input_ids=prompt_ids, | |
| attention_mask=prompt_mask, | |
| generation_config=self.generation_config, | |
| **vision_generation_kwargs, | |
| ) | |
| completion_ids = output[:, prompt_ids.size(1) :] | |
| completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) | |
| return prompt_ids, prompt_mask, completion_ids, completion_mask | |
| def _calculate_rewards_from_functions(self, prompts, completions, completion_ids_list, **reward_kwargs): | |
| """ | |
| Calculate rewards using reward functions | |
| """ | |
| device = self.accelerator.device | |
| rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) | |
| # Add trainer state to reward kwargs for dynamic reward shaping | |
| reward_kwargs["trainer_state"] = self.state | |
| for i, (reward_func, reward_processing_class) in enumerate( | |
| zip(self.reward_funcs, self.reward_processing_classes) | |
| ): | |
| if isinstance(reward_func, nn.Module): # Model-based reward function | |
| # Handle conversational vs text input | |
| if is_conversational({"prompt": prompts[0]}): | |
| messages = [{"messages": p + c} for p, c in zip(prompts, completions)] | |
| texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] | |
| else: | |
| texts = [p + c for p, c in zip(prompts, completions)] | |
| # Tokenize and get reward scores | |
| reward_inputs = reward_processing_class( | |
| text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False | |
| ) | |
| reward_inputs = {k: v.to(device) for k, v in reward_inputs.items()} | |
| with torch.inference_mode(): | |
| rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,) | |
| else: | |
| # Custom reward function | |
| output_reward_func = reward_func( | |
| prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs | |
| ) | |
| # Convert None values to NaN | |
| output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] | |
| rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) | |
| # Weight and sum across all reward functions | |
| if self.reward_weights is not None: | |
| total_rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) | |
| else: | |
| total_rewards = rewards_per_func.nansum(dim=1) | |
| return total_rewards | |
| def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs=None): | |
| # Get the number of tokens to truncate from prompt | |
| num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0) | |
| # Truncate left to avoid oom | |
| prompt_ids = prompt_ids[:, num_tokens_to_truncate:] | |
| prompt_mask = prompt_mask[:, num_tokens_to_truncate:] | |
| # Concat the prompt and completion | |
| prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1) | |
| prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1) | |
| # Prepare model kwargs with vision inputs if available | |
| model_kwargs = {"attention_mask": prompt_completion_mask} | |
| if vision_inputs is not None: | |
| if "pixel_values" in vision_inputs: | |
| model_kwargs["pixel_values"] = vision_inputs["pixel_values"] | |
| if "pixel_attention_mask" in vision_inputs: | |
| model_kwargs["pixel_attention_mask"] = vision_inputs["pixel_attention_mask"] | |
| if "image_sizes" in vision_inputs: | |
| model_kwargs["image_sizes"] = vision_inputs["image_sizes"] | |
| if "image_grid_thw" in vision_inputs: | |
| model_kwargs["image_grid_thw"] = vision_inputs["image_grid_thw"] | |
| # Get the logprobs of the completions from the model | |
| output = model(prompt_completion_ids, **model_kwargs) | |
| # There is 1 offset, because the model predicts the next token | |
| prompt_len = prompt_ids.size(1) | |
| start_idx = prompt_len - 1 if prompt_len > 0 else 0 | |
| # Only slice off the last logit when we have a prompt, otherwise we need all logits | |
| end_idx = -1 if prompt_len > 0 else None | |
| logits = output.logits[:, start_idx:end_idx] | |
| # Take the completion tokens logprob | |
| logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1) | |
| return logprobs | |
| def training_step( | |
| self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None | |
| ) -> torch.Tensor: | |
| model.train() | |
| prompts = inputs["prompt"] | |
| batch_size = len(prompts) | |
| # Handle images for VLM support | |
| has_images = "image" in inputs | |
| images = None | |
| if has_images: | |
| images = inputs["image"] | |
| # Convert conversational prompts to include image tokens | |
| for prompt in prompts: | |
| if isinstance(prompt, list): | |
| for message in prompt: | |
| if not isinstance(message, dict): | |
| continue | |
| content = message.get("content") | |
| role = message.get("role") | |
| if isinstance(content, str): | |
| if role == "user": | |
| message["content"] = [{"type": "image"}, {"type": "text", "text": content}] | |
| elif role == "system": | |
| message["content"] = [{"type": "text", "text": content}] | |
| if self.args.use_vllm: | |
| prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(prompts, images) | |
| else: | |
| prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts, images) | |
| contain_eos_token = torch.any(completion_ids == self.eos_token_id, dim=-1) | |
| # Extract vision inputs if available for VLM support | |
| vision_inputs = None | |
| if has_images and self.is_vision_model and not self.args.use_vllm: | |
| # For vision models with transformers generation, we need to prepare vision inputs | |
| # Process the images to get vision inputs that can be passed through the forward pass | |
| vision_inputs = {} | |
| kwargs = {"images": [[img] for img in images]} | |
| processed = self.processing_class( | |
| text=[""] * len(images), # Dummy text for vision processing | |
| return_tensors="pt", | |
| **kwargs, | |
| ) | |
| # Handle DataParallel wrapped models | |
| model_device = getattr(model, "device", None) | |
| model_dtype = getattr(model, "dtype", None) | |
| if model_device is None and hasattr(model, "module"): | |
| model_device = model.module.device | |
| model_dtype = model.module.dtype | |
| # Move vision tensors to device and convert to model dtype | |
| # Need to duplicate for 2 completions per prompt | |
| if "pixel_values" in processed: | |
| vision_inputs["pixel_values"] = ( | |
| processed["pixel_values"].to(model_device, dtype=model_dtype).repeat(2, 1, 1, 1) | |
| ) | |
| if "pixel_attention_mask" in processed: | |
| vision_inputs["pixel_attention_mask"] = processed["pixel_attention_mask"].to(model_device).repeat(2, 1) | |
| if "image_sizes" in processed: | |
| vision_inputs["image_sizes"] = processed["image_sizes"].to(model_device).repeat(2, 1) | |
| if "image_grid_thw" in processed: | |
| vision_inputs["image_grid_thw"] = processed["image_grid_thw"].to(model_device).repeat(2, 1) | |
| logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs) | |
| with torch.no_grad(): | |
| if self.ref_model is not None: | |
| ref_logprobs = self._forward( | |
| self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs | |
| ) | |
| else: # peft case: we just need to disable the adapter | |
| with self.model.disable_adapter(): | |
| ref_logprobs = self._forward( | |
| self.model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs | |
| ) | |
| # Decode the completions, and format them if the input is conversational | |
| device = logprobs.device | |
| completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) | |
| if is_conversational({"prompt": prompts[0]}): | |
| completions = [[{"role": "assistant", "content": completion}] for completion in completions] | |
| # Get the reward from reward functions, judge, or deprecated reward_model | |
| if self.reward_funcs is not None: | |
| # First create completion_ids_list for custom reward functions | |
| completion_ids_list = [completion_ids[i].tolist() for i in range(completion_ids.shape[0])] | |
| # Extract additional fields from inputs for reward functions | |
| reward_kwargs = {} | |
| keys = [key for key in inputs if key not in ["prompt"]] | |
| for key in keys: | |
| if isinstance(inputs[key], (list, tuple)): | |
| # Repeat input fields to match number of completions (2 per prompt) | |
| reward_kwargs[key] = inputs[key] * 2 | |
| else: | |
| reward_kwargs[key] = inputs[key] | |
| # Calculate rewards using reward functions | |
| rewards = self._calculate_rewards_from_functions( | |
| prompts=2 * prompts, completions=completions, completion_ids_list=completion_ids_list, **reward_kwargs | |
| ) | |
| # Apply missing EOS penalty if configured | |
| if self.args.missing_eos_penalty is not None: | |
| rewards[~contain_eos_token] -= self.args.missing_eos_penalty | |
| # Split rewards into chosen/rejected pairs | |
| first_half, second_half = rewards.split(batch_size) | |
| mask = first_half >= second_half | |
| elif self.judge is not None: | |
| # Once formatted, conversational data may contain special tokens (such as <|im_start|>) that are not | |
| # directly understandable by the judge and could alter its judgment. To avoid this and make the judge | |
| # independent of the model's chat template, we use the raw conversation data, and apply our own chat | |
| # template to it. | |
| if is_conversational({"prompt": prompts[0]}): | |
| environment = jinja2.Environment() | |
| template = environment.from_string(SIMPLE_CHAT_TEMPLATE) | |
| prompts = [template.render(messages=prompt) for prompt in prompts] | |
| completions = [template.render(messages=completion) for completion in completions] | |
| ranks_of_first_completion = self.judge.judge( | |
| prompts, list(zip(completions[:batch_size], completions[batch_size:])) | |
| ) | |
| # convert ranks to a True/False mask: | |
| # when rank == 0, it means the first completion is the best | |
| # when rank == 1, it means the second completion is the best | |
| mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device) | |
| batch_range = torch.arange(batch_size, device=device) | |
| chosen_indices = batch_range + (~mask * batch_size) | |
| rejected_indices = batch_range + (mask * batch_size) | |
| # Build tensor so that the first half is the chosen examples and the second half the rejected examples | |
| cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) # cr = chosen and rejected | |
| cr_logprobs = logprobs[cr_indices] | |
| cr_ref_logprobs = ref_logprobs[cr_indices] | |
| # mask out the padding tokens | |
| padding_mask = ~completion_mask.bool() | |
| cr_padding_mask = padding_mask[cr_indices] | |
| cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1) | |
| cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1) | |
| # Split the chosen and rejected examples | |
| chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size) | |
| chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size) | |
| pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum | |
| ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum | |
| logits = pi_logratios - ref_logratios | |
| if self.args.loss_type == "sigmoid": | |
| losses = -F.logsigmoid(self.beta * logits) | |
| elif self.args.loss_type == "ipo": | |
| losses = (logits - 1 / (2 * self.beta)) ** 2 | |
| else: | |
| raise NotImplementedError(f"invalid loss type {self.loss_type}") | |
| loss = losses.mean() | |
| # Log everything | |
| if self.reward_funcs is not None: | |
| # When using reward_funcs, we have rewards instead of scores | |
| scores_margin = rewards[chosen_indices] - rewards[rejected_indices] | |
| self.stats["objective/scores_margin"].append( | |
| self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item() | |
| ) | |
| self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(rewards.mean()).mean().item()) | |
| self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item()) | |
| self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item()) | |
| self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item()) | |
| kl = logprobs - ref_logprobs | |
| mean_kl = kl.sum(1).mean() | |
| self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) | |
| non_score_reward = (-self.beta * kl).sum(1) | |
| mean_non_score_reward = non_score_reward.mean() | |
| self.stats["objective/non_score_reward"].append( | |
| self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() | |
| ) | |
| if self.reward_funcs is not None: | |
| # Calculate RLHF reward by combining rewards with non_score_reward | |
| rlhf_reward = rewards + non_score_reward | |
| self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item()) | |
| mean_entropy = -logprobs.sum(1).mean() | |
| self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item()) | |
| chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum) | |
| gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards) | |
| self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item()) | |
| rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum) | |
| gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards) | |
| self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item()) | |
| margin = gathered_chosen_rewards - gathered_rejected_rewards | |
| self.stats["rewards/margins"].append(margin.mean().item()) | |
| accuracy = margin > 0 | |
| self.stats["rewards/accuracies"].append(accuracy.float().mean().item()) | |
| self.stats["beta"].append(self.beta) | |
| if ( | |
| self.args.torch_empty_cache_steps is not None | |
| and self.state.global_step % self.args.torch_empty_cache_steps == 0 | |
| ): | |
| empty_cache() | |
| kwargs = {} | |
| # For LOMO optimizers you need to explicitly use the learning rate | |
| if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: | |
| kwargs["learning_rate"] = self._get_learning_rate() | |
| if self.args.n_gpu > 1: | |
| loss = loss.mean() # mean() to average on multi-gpu parallel training | |
| self.accelerator.backward(loss, **kwargs) | |
| return loss.detach() / self.args.gradient_accumulation_steps | |
| # Same as Trainer._maybe_log_save_evaluate but log our metrics | |
| def _maybe_log_save_evaluate( | |
| self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time, learning_rate=None | |
| ): | |
| if self.control.should_log and self.state.global_step > self._globalstep_last_logged: | |
| logs: dict[str, float] = {} | |
| # all_gather + mean() to get average loss over all processes | |
| tr_loss_scalar = self._nested_gather(tr_loss).mean().item() | |
| # reset tr_loss to zero | |
| tr_loss -= tr_loss | |
| logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) | |
| if grad_norm is not None: | |
| logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm | |
| if learning_rate is not None: | |
| logs["learning_rate"] = learning_rate | |
| else: | |
| logs["learning_rate"] = self._get_learning_rate() | |
| # Add our metrics | |
| for key, val in self.stats.items(): | |
| logs[key] = sum(val) / len(val) | |
| self.stats = {key: [] for key in self.stats} # reset stats | |
| self._total_loss_scalar += tr_loss_scalar | |
| self._globalstep_last_logged = self.state.global_step | |
| self.store_flos() | |
| self.log(logs, start_time) | |
| metrics = None | |
| if self.control.should_evaluate: | |
| metrics = self._evaluate(trial, ignore_keys_for_eval) | |
| is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial) | |
| if self.args.save_strategy == "best": | |
| self.control.should_save = is_new_best_metric | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| # Ensure the model card is saved along with the checkpoint | |
| def _save_checkpoint(self, model, trial): | |
| if self.args.hub_model_id is None: | |
| model_name = Path(self.args.output_dir).name | |
| else: | |
| model_name = self.args.hub_model_id.split("/")[-1] | |
| self.create_model_card(model_name=model_name) | |
| super()._save_checkpoint(model, trial) | |
| class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer): | |
| """ | |
| Initialize OnlineDPOTrainer. | |
| Args: | |
| model (`Union[str, nn.Module, PreTrainedModel]`): | |
| Model to be trained. Can be either: | |
| - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a | |
| path to a *directory* containing model weights saved using | |
| [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded | |
| using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in | |
| `args.model_init_kwargs`. | |
| - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. | |
| ref_model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `None`): | |
| The reference model to use for training. If None is specified, the reference model will be created from the | |
| model. | |
| judge ([`BasePairwiseJudge`]): | |
| The judge to use for pairwise comparison of model completions. | |
| reward_funcs (`Union[RewardFunc, list[RewardFunc]]`, *optional*): | |
| Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward | |
| functions with the prompts and completions and sum the rewards. Can be either: | |
| - A single reward function: Can be a string (path to model), a [`~transformers.PreTrainedModel`], or a | |
| custom callable function. | |
| - A list of reward functions: Must all be of compatible types. | |
| Note: Only one of `judge`, or `reward_funcs` should be provided. | |
| args ([`OnlineDPOConfig`]): | |
| The online DPO config arguments to use for training. | |
| data_collator ([`~transformers.DataCollator`]): | |
| The data collator to use for training. If None is specified, the default data collator | |
| ([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the | |
| sequences in the batch, given a dataset of paired sequences. | |
| train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): | |
| The dataset to use for training. | |
| eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): | |
| The dataset to use for evaluation. | |
| processing_class ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.ProcessorMixin`], *optional*): | |
| Processing class used to process the data. If provided, will be used to automatically process the inputs | |
| for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
| reuse the fine-tuned model. | |
| reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*): | |
| Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: | |
| - A single processing class: Used when `reward_funcs` contains only one reward function. | |
| - A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. | |
| If set to `None`, the tokenizer for each model-based reward function is automatically loaded using | |
| [`~transformers.AutoTokenizer.from_pretrained`]. | |
| peft_config ([`~peft.PeftConfig`], *optional*): | |
| PEFT configuration used to wrap the model. If `None`, the model is not wrapped. | |
| compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
| The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to | |
| metric values. | |
| callbacks (`list[transformers.TrainerCallback]`): | |
| The callbacks to use for training. | |
| optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
| The optimizer and scheduler to use for training. | |
| preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
| The function to use to preprocess the logits before computing the metrics. | |
| reward_model: | |
| <Deprecated version="0.22.0"> | |
| This parameter is deprecated and will be removed in version 0.25.0. Use `reward_funcs` instead. | |
| </Deprecated> | |
| """ | |
| def __init__( | |
| self, | |
| model, | |
| ref_model = None, | |
| reward_funcs = None, | |
| judge = None, | |
| args = None, | |
| data_collator = None, | |
| train_dataset = None, | |
| eval_dataset = None, | |
| processing_class = None, | |
| reward_processing_classes = None, | |
| peft_config = None, | |
| compute_metrics = None, | |
| callbacks = None, | |
| preprocess_logits_for_metrics = None, | |
| reward_model = None, | |
| reward_processing_class = None, | |
| **kwargs | |
| ): | |
| if args is None: args = UnslothOnlineDPOConfig() | |
| use_bf16 = getattr(args, 'bf16', False) | |
| if type(use_bf16) is not bool: use_bf16 = False | |
| use_fp16 = getattr(args, 'fp16', False) | |
| if type(use_fp16) is not bool: use_fp16 = False | |
| force_float32 = False | |
| full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' | |
| if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): | |
| print('Unsloth: Switching to float32 training since model cannot work with float16') | |
| force_float32 = True | |
| mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
| dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) | |
| if dtype is None: dtype = model.get_input_embeddings().dtype | |
| from unsloth_zoo.utils import _get_dtype | |
| dtype = _get_dtype(dtype) | |
| float16 = dtype == torch.float16 | |
| if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
| if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
| if force_float32: | |
| # Forced float32 training | |
| args.fp16 = False | |
| args.bf16 = False | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
| elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
| # Mixed precision training | |
| args.fp16 = float16 | |
| args.bf16 = not float16 | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
| if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
| args.eval_strategy = 'steps' | |
| if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
| ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
| if ga_steps is not None and ga_steps > 1: | |
| from transformers import __version__ as transformers_version | |
| if Version(transformers_version) <= Version('4.45.2'): | |
| print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
| '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
| if getattr(args, 'eval_strategy', 'no') != 'no': | |
| eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
| if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
| if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
| fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
| if type(fp16_full_eval) is not bool: fp16_full_eval = False | |
| bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
| if type(bf16_full_eval) is not bool: bf16_full_eval = False | |
| if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
| if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
| if force_float32: | |
| args.bf16_full_eval = False | |
| args.fp16_full_eval = False | |
| elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
| args.bf16_full_eval = True | |
| args.fp16_full_eval = False | |
| elif not bf16_full_eval and not fp16_full_eval: | |
| args.bf16_full_eval = args.bf16 | |
| args.fp16_full_eval = args.fp16 | |
| _output_logits = False | |
| if locals().get('compute_metrics', None) is not None: _output_logits = True | |
| if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
| if _output_logits: | |
| os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
| if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
| pass | |
| else: | |
| model_max_seq_length = getattr(model, 'max_seq_length', None) | |
| args_max_seq_length = getattr(args, 'max_seq_length', None) | |
| if args_max_seq_length is None and model_max_seq_length is not None: | |
| max_seq_length = model.max_seq_length | |
| if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
| if model is not None and hasattr(model, 'for_training'): | |
| model.for_training() | |
| if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
| if 'processing_class' in locals(): | |
| if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
| if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
| __tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
| from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
| data_collator = TransformersDataCollatorForLanguageModeling( | |
| __tokenizer, | |
| mlm = False, | |
| mlm_probability = 0.0, | |
| pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), | |
| ) | |
| elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
| data_collator = DataCollatorForSeq2Seq( | |
| __tokenizer, | |
| pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), | |
| ) | |
| else: | |
| if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
| if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
| if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq): | |
| data_collator = DataCollatorForSeq2Seq( | |
| __tokenizer.tokenizer, | |
| pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), | |
| ) | |
| else: | |
| data_collator = TransformersDataCollatorForLanguageModeling( | |
| __tokenizer.tokenizer, | |
| mlm = False, | |
| mlm_probability = 0.0, | |
| pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), | |
| ) | |
| other_metrics = [] | |
| from unsloth_zoo.logging_utils import PatchRLStatistics | |
| PatchRLStatistics('online_dpo_trainer', other_metrics) | |
| # [TODO] Fix up DataParallel multiplying batch sizes | |
| # [TODO] DDP works, but DP seems to not work? [TODO] | |
| if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: | |
| if getattr(args, "_n_gpu", 1) != 1: | |
| args._n_gpu = 1 | |
| if "model" in locals() and hasattr(model, "for_training"): | |
| model.for_training() | |
| super().__init__( | |
| model = model, | |
| ref_model = ref_model, | |
| reward_funcs = reward_funcs, | |
| judge = judge, | |
| args = args, | |
| data_collator = data_collator, | |
| train_dataset = train_dataset, | |
| eval_dataset = eval_dataset, | |
| processing_class = processing_class, | |
| reward_processing_classes = reward_processing_classes, | |
| peft_config = peft_config, | |
| compute_metrics = compute_metrics, | |
| callbacks = callbacks, | |
| preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
| reward_model = reward_model, | |
| reward_processing_class = reward_processing_class,**kwargs) | |
| if "model" in locals() and hasattr(model, "for_inference"): | |
| model.for_inference() | |
| if hasattr(self, 'neftune_hook_handle'): | |
| self.neftune_hook_handle.remove() | |
| if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
| if getattr(args, 'neftune_noise_alpha', None) is not None: | |
| model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
| pass | |
| if hasattr(self, 'accelerator'): | |
| scaler = self.accelerator.scaler | |
| current_model = model | |
| while hasattr(current_model, 'model'): | |
| current_model.accelerator_scaler = scaler | |
| current_model = current_model.model | |
| current_model.accelerator_scaler = scaler | |
| pass | |
| if hasattr(self, 'train'): | |
| self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) | |
| pass | |
| pass | |
| if hasattr(logger, "addFilter"): | |
| import logging | |
| class HideLoggingMessage(logging.Filter): | |
| def __init__(self, text): self.text = text | |
| def filter(self, x): return not (self.text in x.getMessage()) | |
| pass | |
| logger.addFilter(HideLoggingMessage("`use_cache=True`")) | |