|
|
""" |
|
|
2025.11.3 |
|
|
2025.11.2 |
|
|
4.57.1 |
|
|
0.24.0 |
|
|
__UNSLOTH_VERSIONING__ |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import Tensor |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
|
from trl.trainer.rloo_trainer import (Any, AutoConfig, AutoModelForSequenceClassification, AutoProcessor, AutoTokenizer, BaseTrainer, DataLoader, Dataset, FSDP, GenerationConfig, IterableDataset, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RLOOConfig, RLOOTrainer, RepeatSampler, RewardFunc, Sampler, SyncRefModelCallback, TrainerCallback, Union, VLLMClient, apply_chat_template, broadcast_object_list, datasets, defaultdict, deque, disable_dropout_in_model, ensure_master_addr_port, entropy_from_logits, gather, gather_object, identity, inspect, is_conversational, is_datasets_available, is_flash_attn_2_available, is_peft_model, is_rich_available, is_vllm_available, logger, logging, maybe_apply_chat_template, nanmax, nanmin, nanstd, nn, nullcontext, os, pad, partial, prepare_deepspeed, prepare_fsdp, prepare_multimodal_messages, prepare_peft_model, print_prompt_completions_sample, profiling_context, profiling_decorator, seed_worker, selective_log_softmax, set_seed, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, textwrap, torch, transformers, unsplit_pixel_values_by_grid, unwrap_model_for_generation, wandb, warnings, FSDP, Optional, apply_chat_template, broadcast_object_list, gather, gather_object, is_flash_attn_2_available, maybe_apply_chat_template, nullcontext, os, pad, prepare_multimodal_messages, profiling_context, torch, transformers, unwrap_model_for_generation, FSDP, gather, is_peft_model, nn, nullcontext, os, profiling_decorator, Any, Union, profiling_decorator, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, torch, unsplit_pixel_values_by_grid, Optional, PreTrainedModel, logger, os, torch, FSDP, nn, os, FSDP, nn, torch) |
|
|
|
|
|
|
|
|
import os |
|
|
from typing import * |
|
|
from dataclasses import dataclass, field |
|
|
from packaging.version import Version |
|
|
import torch |
|
|
import numpy as np |
|
|
from contextlib import nullcontext |
|
|
from torch.nn import functional as F |
|
|
import inspect |
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
from transformers.training_args import ParallelMode |
|
|
|
|
|
|
|
|
import functools |
|
|
from types import MethodType |
|
|
def prepare_for_training_mode(f): |
|
|
@functools.wraps(f) |
|
|
def wrapper(self, *args, **kwargs): |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_training"): |
|
|
self.model.for_training() |
|
|
output = f(self, *args, **kwargs) |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_inference"): |
|
|
self.model.for_inference() |
|
|
return output |
|
|
return wrapper |
|
|
pass |
|
|
|
|
|
torch_compile_options = { |
|
|
"epilogue_fusion" : True, |
|
|
"max_autotune" : False, |
|
|
"shape_padding" : True, |
|
|
"trace.enabled" : False, |
|
|
"triton.cudagraphs" : False, |
|
|
} |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
|
def chunked_selective_log_softmax(logits, index): |
|
|
|
|
|
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) |
|
|
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) |
|
|
all_per_token_logps = [] |
|
|
|
|
|
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): |
|
|
chunk_logits = chunk_logits.to(torch.float32) |
|
|
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) |
|
|
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) |
|
|
per_token_logps = selected_logits - logsumexp_values |
|
|
all_per_token_logps.append(per_token_logps) |
|
|
pass |
|
|
all_per_token_logps = torch.concat(all_per_token_logps) |
|
|
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) |
|
|
return all_per_token_logps |
|
|
|
|
|
def calculate_pad_tokens_in_prompt( |
|
|
input_ids: torch.Tensor, |
|
|
logits_to_keep: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens |
|
|
""" |
|
|
if logits_to_keep >= input_ids.shape[1]: |
|
|
raise ValueError("logits_to_keep must be smaller than the sequence length.") |
|
|
|
|
|
prompt_section = input_ids[:, :-logits_to_keep] |
|
|
|
|
|
padding_mask = (prompt_section == pad_token_id) |
|
|
|
|
|
pad_token_counts = padding_mask.sum(dim=1) |
|
|
|
|
|
return pad_token_counts |
|
|
|
|
|
def create_completion_attention_mask( |
|
|
completion_input_ids: torch.Tensor, |
|
|
left_pad_tokens_per_prompt: torch.Tensor, |
|
|
max_left_pad: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] |
|
|
|
|
|
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens |
|
|
and pad are pad tokens, this function would make a completion mask that would 0 out the pad |
|
|
and p tokens. so in this example [0,0,0,1,1,1,0,0,0] |
|
|
""" |
|
|
batch_size, completion_len = completion_input_ids.shape |
|
|
device = completion_input_ids.device |
|
|
|
|
|
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt |
|
|
|
|
|
indices = torch.arange(completion_len, device=device).unsqueeze(0) |
|
|
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) |
|
|
|
|
|
non_padding_mask = (completion_input_ids != pad_token_id) |
|
|
|
|
|
final_mask = shift_mask & non_padding_mask |
|
|
|
|
|
return final_mask |
|
|
|
|
|
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: |
|
|
""" |
|
|
Moves all padding tokens in each sequence of a batch to the right. |
|
|
""" |
|
|
mask = (tensor != pad_id) |
|
|
|
|
|
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) |
|
|
packed_tensor = torch.gather(tensor, 1, sorted_indices) |
|
|
return packed_tensor |
|
|
|
|
|
def align_logprobs_with_mask( |
|
|
logprob_tensor: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
pad_value: float = 0.0 |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Aligns a log probability tensor with a given attention mask. |
|
|
""" |
|
|
|
|
|
device = logprob_tensor.device |
|
|
batch_size, logprob_seq_len = logprob_tensor.shape |
|
|
mask_seq_len = attention_mask.shape[1] |
|
|
|
|
|
padded_logprobs = torch.full( |
|
|
attention_mask.shape, |
|
|
fill_value=pad_value, |
|
|
dtype=logprob_tensor.dtype, |
|
|
device=device |
|
|
) |
|
|
|
|
|
left_pad_counts = torch.argmax(attention_mask, dim=1) |
|
|
|
|
|
cols = torch.arange(logprob_seq_len, device=device) |
|
|
dest_indices = left_pad_counts.unsqueeze(1) + cols |
|
|
|
|
|
|
|
|
|
|
|
row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_mask = dest_indices < mask_seq_len |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_rows = row_indices[valid_mask] |
|
|
valid_cols = dest_indices[valid_mask] |
|
|
valid_vals = logprob_tensor[valid_mask] |
|
|
|
|
|
|
|
|
|
|
|
padded_logprobs[valid_rows, valid_cols] = valid_vals |
|
|
|
|
|
return padded_logprobs |
|
|
def vLLMSamplingParams(**kwargs): |
|
|
from vllm import SamplingParams |
|
|
|
|
|
sampling_params = SamplingParams(**kwargs) |
|
|
sampling_params._set_kwargs = kwargs |
|
|
return sampling_params |
|
|
@dataclass |
|
|
class UnslothRLOOConfig(RLOOConfig): |
|
|
""" |
|
|
|
|
|
Configuration class for the [`RLOOTrainer`]. |
|
|
|
|
|
This class includes only the parameters that are specific to RLOO training. For a full list of training arguments, |
|
|
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may |
|
|
differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
|
command line. |
|
|
|
|
|
Parameters: |
|
|
> Parameters that control the model and reference model |
|
|
|
|
|
model_init_kwargs (`str`, `dict[str, Any]`, *optional*): |
|
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
|
argument of the [`RLOOTrainer`] is provided as a string. |
|
|
disable_dropout (`bool`, *optional*, defaults to `False`): |
|
|
Whether to disable dropout in the model. This is useful for training with a reference model, as it prevents |
|
|
the model from generating different logprobs for the same input. |
|
|
|
|
|
> Parameters that control the data preprocessing |
|
|
|
|
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
|
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that |
|
|
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`. |
|
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
|
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left. |
|
|
num_generations (`int` or `None`, *optional*, defaults to `2`): |
|
|
Number of generations per prompt to sample. The effective batch size (num_processes * per_device_batch_size |
|
|
* gradient_accumulation_steps) must be evenly divisible by this value. |
|
|
max_completion_length (`int` or `None`, *optional*, defaults to `256`): |
|
|
Maximum length of the generated completion. |
|
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
|
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible |
|
|
with vLLM generation. |
|
|
shuffle_dataset (`bool`, *optional*, defaults to `True`): |
|
|
Whether to shuffle the training dataset. |
|
|
|
|
|
> Parameters that control generation |
|
|
|
|
|
generation_batch_size: (`int`, *optional*): |
|
|
Batch size to use for generation. If `None`, it defaults to the effective training batch size: |
|
|
`per_device_train_batch_size * num_processes * steps_per_generation`. In other words, there is one |
|
|
generation batch processed per optimization step. Mutually exclusive with `steps_per_generation`. |
|
|
steps_per_generation: (`int`, *optional*): |
|
|
Number of steps per generation. If `None`, it defaults to `gradient_accumulation_steps`. Mutually exclusive |
|
|
with `generation_batch_size`. |
|
|
temperature (`float`, defaults to `1.0`): |
|
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
|
top_p (`float`, *optional*, defaults to `1.0`): |
|
|
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to |
|
|
`1.0` to consider all tokens. |
|
|
top_k (`int`, *optional*): |
|
|
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is |
|
|
disabled and all tokens are considered. |
|
|
min_p (`float`, *optional*): |
|
|
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a |
|
|
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range. |
|
|
repetition_penalty (`float`, *optional*, defaults to `1.0`): |
|
|
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far. |
|
|
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat |
|
|
tokens. |
|
|
use_transformers_paged (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers` |
|
|
paged implementation will be used for generation instead of the default padded implementation. This |
|
|
parameter is only effective when `use_vllm` is set to `False`. |
|
|
cache_implementation (`str`, *optional*): |
|
|
Implementation of the cache method for faster generation when `use_vllm` is set to `False`. |
|
|
generation_kwargs (`dict[str, Any]`, *optional*): |
|
|
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or |
|
|
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the |
|
|
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict |
|
|
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them. |
|
|
|
|
|
> Parameters that control generation acceleration powered by vLLM |
|
|
|
|
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation |
|
|
instead of the default model.generate(). Requires `vllm` to be installed. |
|
|
vllm_mode (`str`, *optional*, defaults to `"server"`): |
|
|
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or |
|
|
`"colocate"`. |
|
|
|
|
|
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM |
|
|
server is running (start with `trl vllm-serve`). |
|
|
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a |
|
|
separate server but may cause resource contention with training. |
|
|
vllm_model_impl (`str`, *optional*, defaults to `"vllm"`): |
|
|
Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use |
|
|
the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model |
|
|
implementation. |
|
|
vllm_guided_decoding_regex (`str`, *optional*): |
|
|
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled. |
|
|
|
|
|
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`) |
|
|
|
|
|
vllm_server_base_url (`str`, *optional*): |
|
|
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and |
|
|
`vllm_server_port` are ignored. |
|
|
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`): |
|
|
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_port (`int`, *optional*, defaults to `8000`): |
|
|
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided. |
|
|
vllm_server_timeout (`float`, *optional*, defaults to `240.0`): |
|
|
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the |
|
|
timeout, a `ConnectionError` is raised. |
|
|
|
|
|
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`) |
|
|
|
|
|
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.3`): |
|
|
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag. |
|
|
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`): |
|
|
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to |
|
|
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when |
|
|
launching the vLLM server via the `--vllm_tensor_parallel_size` flag. |
|
|
vllm_enable_sleep_mode (`bool`, *optional*, defaults to `False`): |
|
|
Whether to enable sleep mode for vLLM. If `True`, vLLM will sleep during the optimization step and woken |
|
|
for weight sync and generation. |
|
|
|
|
|
> Parameters that control the training |
|
|
|
|
|
beta (`float`, *optional*, defaults to `0.05`): |
|
|
KL coefficient. If `0.0`, the reference model is not loaded, reducing memory usage and improving training |
|
|
speed. |
|
|
num_iterations (`int`, *optional*, defaults to `1`): |
|
|
Number of iterations per batch (denoted as μ in the algorithm). |
|
|
epsilon (`float`, *optional*, defaults to `0.2`): |
|
|
Epsilon value for clipping. |
|
|
epsilon_high (`float`, *optional*): |
|
|
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound |
|
|
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`. |
|
|
reward_weights (`list[float]`, *optional*): |
|
|
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are |
|
|
weighted equally with weight `1.0`. |
|
|
normalize_advantages (`bool`, *optional*, defaults to `False`): |
|
|
Whether to normalize advantages. Normalization is done per generation batch to have mean `0.0` and standard |
|
|
deviation of `1.0`. |
|
|
reward_clip_range (`tuple[float, float]`, *optional*): |
|
|
Clip range for rewards as (min, max). If `None`, no clipping is applied. |
|
|
mask_truncated_completions (`bool`, *optional*, defaults to `False`): |
|
|
When enabled, truncated completions are excluded from the loss calculation, preventing them from being |
|
|
incorrectly penalized and introducing noise during training. According to the |
|
|
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability. |
|
|
sync_ref_model (`bool`, *optional*, defaults to `False`): |
|
|
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using |
|
|
the `ref_model_mixup_alpha` parameter. This synchronization originates from the |
|
|
[TR-DPO](https://huggingface.co/papers/2404.09656) paper. |
|
|
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`): |
|
|
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix |
|
|
between the current policy and the previous reference policy during updates. The reference policy is |
|
|
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you |
|
|
must set `sync_ref_model=True`. |
|
|
ref_model_sync_steps (`int`, *optional*, defaults to `512`): |
|
|
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how |
|
|
frequently the current policy is synchronized with the reference policy. To use this parameter, you must |
|
|
set `sync_ref_model=True`. |
|
|
|
|
|
> Parameters that control the logging |
|
|
|
|
|
log_completions (`bool`, *optional*, defaults to `False`): |
|
|
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is installed, |
|
|
it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`. |
|
|
num_completions_to_print (`int`, *optional*): |
|
|
Number of completions to print with `rich`. If `None`, all completions are logged. |
|
|
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`): |
|
|
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all prompts |
|
|
are logged. |
|
|
|
|
|
> Deprecated parameters |
|
|
|
|
|
rloo_k: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `num_generations` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
cliprange: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `epsilon` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
kl_coef: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `beta` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
exp_name: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `run_name` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
normalize_reward: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `normalize_advantages` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
num_ppo_epochs: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `num_iterations` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
num_mini_batches: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `steps_per_generation` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
total_episodes: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `max_steps` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
response_length: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `max_completion_length` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
token_level_kl: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. KL is now computed only at the sequence |
|
|
level. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
dataset_num_proc: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. This parameter was unused, you can |
|
|
safely remove it from your scripts. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
local_rollout_forward_batch_size: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Now it is automatically set to |
|
|
`per_device_train_batch_size` (or `per_device_eval_batch_size` during evaluation). |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
num_sample_generations: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `logging_steps` to control |
|
|
generation logging frequency. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
stop_token: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
stop_token_id: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `processing_class.eos_token_id` |
|
|
instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
missing_eos_penalty: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Replicate with a custom reward function |
|
|
checking if `eos_token_id` is in `completion_ids`. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
""" |
|
|
vllm_sampling_params: Optional[Any] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
|
) |
|
|
unsloth_num_chunks : Optional[int] = field( |
|
|
default = -1, |
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
|
) |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
output_dir = None, |
|
|
overwrite_output_dir = None, |
|
|
do_train = False, |
|
|
do_eval = False, |
|
|
do_predict = False, |
|
|
eval_strategy = 'no', |
|
|
prediction_loss_only = False, |
|
|
per_device_train_batch_size = 4, |
|
|
per_device_eval_batch_size = 4, |
|
|
per_gpu_train_batch_size = None, |
|
|
per_gpu_eval_batch_size = None, |
|
|
gradient_accumulation_steps = 2, |
|
|
eval_accumulation_steps = 2, |
|
|
eval_delay = 0, |
|
|
torch_empty_cache_steps = 250, |
|
|
learning_rate = 5e-05, |
|
|
weight_decay = 0.01, |
|
|
adam_beta1 = 0.9, |
|
|
adam_beta2 = 0.999, |
|
|
adam_epsilon = 1e-08, |
|
|
max_grad_norm = 1.0, |
|
|
num_train_epochs = 3.0, |
|
|
max_steps = -1, |
|
|
lr_scheduler_type = 'linear', |
|
|
warmup_ratio = 0.1, |
|
|
warmup_steps = 0, |
|
|
log_level = 'passive', |
|
|
log_level_replica = 'warning', |
|
|
log_on_each_node = True, |
|
|
logging_dir = None, |
|
|
logging_strategy = 'steps', |
|
|
logging_first_step = False, |
|
|
logging_steps = 1, |
|
|
logging_nan_inf_filter = False, |
|
|
save_strategy = 'steps', |
|
|
save_steps = 500, |
|
|
save_total_limit = None, |
|
|
save_safetensors = True, |
|
|
save_on_each_node = False, |
|
|
save_only_model = False, |
|
|
restore_callback_states_from_checkpoint = False, |
|
|
no_cuda = False, |
|
|
use_cpu = False, |
|
|
use_mps_device = False, |
|
|
seed = 3407, |
|
|
data_seed = 3407, |
|
|
jit_mode_eval = False, |
|
|
bf16 = False, |
|
|
fp16 = False, |
|
|
fp16_opt_level = 'O1', |
|
|
half_precision_backend = 'auto', |
|
|
bf16_full_eval = False, |
|
|
fp16_full_eval = False, |
|
|
tf32 = None, |
|
|
local_rank = -1, |
|
|
ddp_backend = None, |
|
|
tpu_num_cores = None, |
|
|
tpu_metrics_debug = False, |
|
|
debug = '', |
|
|
dataloader_drop_last = False, |
|
|
eval_steps = None, |
|
|
dataloader_num_workers = 0, |
|
|
dataloader_prefetch_factor = None, |
|
|
past_index = -1, |
|
|
run_name = None, |
|
|
disable_tqdm = None, |
|
|
remove_unused_columns = False, |
|
|
label_names = None, |
|
|
load_best_model_at_end = False, |
|
|
metric_for_best_model = None, |
|
|
greater_is_better = None, |
|
|
ignore_data_skip = False, |
|
|
fsdp = None, |
|
|
fsdp_min_num_params = 0, |
|
|
fsdp_config = None, |
|
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
|
accelerator_config = None, |
|
|
parallelism_config = None, |
|
|
deepspeed = None, |
|
|
label_smoothing_factor = 0.0, |
|
|
optim = 'adamw_8bit', |
|
|
optim_args = None, |
|
|
adafactor = False, |
|
|
group_by_length = False, |
|
|
length_column_name = 'length', |
|
|
report_to = None, |
|
|
project = 'huggingface', |
|
|
trackio_space_id = 'trackio', |
|
|
ddp_find_unused_parameters = None, |
|
|
ddp_bucket_cap_mb = None, |
|
|
ddp_broadcast_buffers = None, |
|
|
dataloader_pin_memory = True, |
|
|
dataloader_persistent_workers = False, |
|
|
skip_memory_metrics = True, |
|
|
use_legacy_prediction_loop = False, |
|
|
push_to_hub = False, |
|
|
resume_from_checkpoint = None, |
|
|
hub_model_id = None, |
|
|
hub_strategy = 'every_save', |
|
|
hub_token = None, |
|
|
hub_private_repo = None, |
|
|
hub_always_push = False, |
|
|
hub_revision = None, |
|
|
gradient_checkpointing = True, |
|
|
gradient_checkpointing_kwargs = None, |
|
|
include_inputs_for_metrics = False, |
|
|
eval_do_concat_batches = True, |
|
|
fp16_backend = 'auto', |
|
|
push_to_hub_model_id = None, |
|
|
push_to_hub_organization = None, |
|
|
push_to_hub_token = None, |
|
|
mp_parameters = '', |
|
|
auto_find_batch_size = False, |
|
|
full_determinism = False, |
|
|
torchdynamo = None, |
|
|
ray_scope = 'last', |
|
|
ddp_timeout = 1800, |
|
|
torch_compile = False, |
|
|
torch_compile_backend = None, |
|
|
torch_compile_mode = None, |
|
|
include_tokens_per_second = False, |
|
|
include_num_input_tokens_seen = False, |
|
|
neftune_noise_alpha = None, |
|
|
optim_target_modules = None, |
|
|
batch_eval_metrics = False, |
|
|
eval_on_start = False, |
|
|
use_liger_kernel = False, |
|
|
liger_kernel_config = None, |
|
|
eval_use_gather_object = False, |
|
|
average_tokens_across_devices = True, |
|
|
model_init_kwargs = None, |
|
|
disable_dropout = False, |
|
|
max_prompt_length = 512, |
|
|
num_generations = 8, |
|
|
max_completion_length = 256, |
|
|
ds3_gather_for_generation = True, |
|
|
shuffle_dataset = True, |
|
|
generation_batch_size = None, |
|
|
steps_per_generation = None, |
|
|
temperature = 1.0, |
|
|
top_p = 1.0, |
|
|
top_k = None, |
|
|
min_p = None, |
|
|
generation_kwargs = {}, |
|
|
repetition_penalty = 1.0, |
|
|
use_transformers_paged = False, |
|
|
cache_implementation = None, |
|
|
use_vllm = False, |
|
|
vllm_mode = 'colocate', |
|
|
vllm_model_impl = 'vllm', |
|
|
vllm_enable_sleep_mode = False, |
|
|
vllm_guided_decoding_regex = None, |
|
|
vllm_server_base_url = None, |
|
|
vllm_server_host = '0.0.0.0', |
|
|
vllm_server_port = 8000, |
|
|
vllm_server_timeout = 240.0, |
|
|
vllm_gpu_memory_utilization = 0.3, |
|
|
vllm_tensor_parallel_size = 1, |
|
|
beta = 0.05, |
|
|
num_iterations = 1, |
|
|
epsilon = 0.2, |
|
|
epsilon_high = None, |
|
|
reward_weights = None, |
|
|
normalize_advantages = False, |
|
|
reward_clip_range = None, |
|
|
mask_truncated_completions = False, |
|
|
sync_ref_model = False, |
|
|
ref_model_mixup_alpha = 0.6, |
|
|
ref_model_sync_steps = 512, |
|
|
log_completions = False, |
|
|
num_completions_to_print = None, |
|
|
wandb_log_unique_prompts = False, |
|
|
rloo_k = None, |
|
|
cliprange = None, |
|
|
kl_coef = None, |
|
|
exp_name = None, |
|
|
normalize_reward = None, |
|
|
num_ppo_epochs = None, |
|
|
num_mini_batches = None, |
|
|
total_episodes = None, |
|
|
response_length = None, |
|
|
token_level_kl = None, |
|
|
dataset_num_proc = None, |
|
|
local_rollout_forward_batch_size = None, |
|
|
num_sample_generations = None, |
|
|
stop_token = None, |
|
|
stop_token_id = None, |
|
|
missing_eos_penalty = None, |
|
|
vllm_sampling_params = None, |
|
|
unsloth_num_chunks = -1, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
|
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
|
output_dir = 'unsloth_training_checkpoints' |
|
|
save_strategy = 'no' |
|
|
if dataset_num_proc is None: |
|
|
from multiprocessing import cpu_count |
|
|
dataset_num_proc = min(max(cpu_count()+4, 2), 64) |
|
|
if (per_device_train_batch_size // num_generations) * num_generations != per_device_train_batch_size: |
|
|
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations)) |
|
|
per_device_train_batch_size = num_generations |
|
|
|
|
|
if temperature <= 0: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') |
|
|
elif temperature >= 10: |
|
|
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
output_dir = output_dir, |
|
|
overwrite_output_dir = overwrite_output_dir, |
|
|
do_train = do_train, |
|
|
do_eval = do_eval, |
|
|
do_predict = do_predict, |
|
|
eval_strategy = eval_strategy, |
|
|
prediction_loss_only = prediction_loss_only, |
|
|
per_device_train_batch_size = per_device_train_batch_size, |
|
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
|
eval_accumulation_steps = eval_accumulation_steps, |
|
|
eval_delay = eval_delay, |
|
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
|
learning_rate = learning_rate, |
|
|
weight_decay = weight_decay, |
|
|
adam_beta1 = adam_beta1, |
|
|
adam_beta2 = adam_beta2, |
|
|
adam_epsilon = adam_epsilon, |
|
|
max_grad_norm = max_grad_norm, |
|
|
num_train_epochs = num_train_epochs, |
|
|
max_steps = max_steps, |
|
|
lr_scheduler_type = lr_scheduler_type, |
|
|
warmup_ratio = warmup_ratio, |
|
|
warmup_steps = warmup_steps, |
|
|
log_level = log_level, |
|
|
log_level_replica = log_level_replica, |
|
|
log_on_each_node = log_on_each_node, |
|
|
logging_dir = logging_dir, |
|
|
logging_strategy = logging_strategy, |
|
|
logging_first_step = logging_first_step, |
|
|
logging_steps = logging_steps, |
|
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
|
save_strategy = save_strategy, |
|
|
save_steps = save_steps, |
|
|
save_total_limit = save_total_limit, |
|
|
save_safetensors = save_safetensors, |
|
|
save_on_each_node = save_on_each_node, |
|
|
save_only_model = save_only_model, |
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
|
no_cuda = no_cuda, |
|
|
use_cpu = use_cpu, |
|
|
use_mps_device = use_mps_device, |
|
|
seed = seed, |
|
|
data_seed = data_seed, |
|
|
jit_mode_eval = jit_mode_eval, |
|
|
bf16 = bf16, |
|
|
fp16 = fp16, |
|
|
fp16_opt_level = fp16_opt_level, |
|
|
half_precision_backend = half_precision_backend, |
|
|
bf16_full_eval = bf16_full_eval, |
|
|
fp16_full_eval = fp16_full_eval, |
|
|
tf32 = tf32, |
|
|
local_rank = local_rank, |
|
|
ddp_backend = ddp_backend, |
|
|
tpu_num_cores = tpu_num_cores, |
|
|
tpu_metrics_debug = tpu_metrics_debug, |
|
|
debug = debug, |
|
|
dataloader_drop_last = dataloader_drop_last, |
|
|
eval_steps = eval_steps, |
|
|
dataloader_num_workers = dataloader_num_workers, |
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
|
past_index = past_index, |
|
|
run_name = run_name, |
|
|
disable_tqdm = disable_tqdm, |
|
|
remove_unused_columns = remove_unused_columns, |
|
|
label_names = label_names, |
|
|
load_best_model_at_end = load_best_model_at_end, |
|
|
metric_for_best_model = metric_for_best_model, |
|
|
greater_is_better = greater_is_better, |
|
|
ignore_data_skip = ignore_data_skip, |
|
|
fsdp = fsdp, |
|
|
fsdp_min_num_params = fsdp_min_num_params, |
|
|
fsdp_config = fsdp_config, |
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
|
accelerator_config = accelerator_config, |
|
|
parallelism_config = parallelism_config, |
|
|
deepspeed = deepspeed, |
|
|
label_smoothing_factor = label_smoothing_factor, |
|
|
optim = optim, |
|
|
optim_args = optim_args, |
|
|
adafactor = adafactor, |
|
|
group_by_length = group_by_length, |
|
|
length_column_name = length_column_name, |
|
|
report_to = report_to, |
|
|
project = project, |
|
|
trackio_space_id = trackio_space_id, |
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
|
dataloader_pin_memory = dataloader_pin_memory, |
|
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
|
skip_memory_metrics = skip_memory_metrics, |
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
|
push_to_hub = push_to_hub, |
|
|
resume_from_checkpoint = resume_from_checkpoint, |
|
|
hub_model_id = hub_model_id, |
|
|
hub_strategy = hub_strategy, |
|
|
hub_token = hub_token, |
|
|
hub_private_repo = hub_private_repo, |
|
|
hub_always_push = hub_always_push, |
|
|
hub_revision = hub_revision, |
|
|
gradient_checkpointing = gradient_checkpointing, |
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
|
eval_do_concat_batches = eval_do_concat_batches, |
|
|
fp16_backend = fp16_backend, |
|
|
push_to_hub_model_id = push_to_hub_model_id, |
|
|
push_to_hub_organization = push_to_hub_organization, |
|
|
push_to_hub_token = push_to_hub_token, |
|
|
mp_parameters = mp_parameters, |
|
|
auto_find_batch_size = auto_find_batch_size, |
|
|
full_determinism = full_determinism, |
|
|
torchdynamo = torchdynamo, |
|
|
ray_scope = ray_scope, |
|
|
ddp_timeout = ddp_timeout, |
|
|
torch_compile = torch_compile, |
|
|
torch_compile_backend = torch_compile_backend, |
|
|
torch_compile_mode = torch_compile_mode, |
|
|
include_tokens_per_second = include_tokens_per_second, |
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
|
neftune_noise_alpha = neftune_noise_alpha, |
|
|
optim_target_modules = optim_target_modules, |
|
|
batch_eval_metrics = batch_eval_metrics, |
|
|
eval_on_start = eval_on_start, |
|
|
use_liger_kernel = use_liger_kernel, |
|
|
liger_kernel_config = liger_kernel_config, |
|
|
eval_use_gather_object = eval_use_gather_object, |
|
|
average_tokens_across_devices = average_tokens_across_devices, |
|
|
model_init_kwargs = model_init_kwargs, |
|
|
disable_dropout = disable_dropout, |
|
|
max_prompt_length = max_prompt_length, |
|
|
num_generations = num_generations, |
|
|
max_completion_length = max_completion_length, |
|
|
ds3_gather_for_generation = ds3_gather_for_generation, |
|
|
shuffle_dataset = shuffle_dataset, |
|
|
generation_batch_size = generation_batch_size, |
|
|
steps_per_generation = steps_per_generation, |
|
|
temperature = temperature, |
|
|
top_p = top_p, |
|
|
top_k = top_k, |
|
|
min_p = min_p, |
|
|
generation_kwargs = generation_kwargs, |
|
|
repetition_penalty = repetition_penalty, |
|
|
use_transformers_paged = use_transformers_paged, |
|
|
cache_implementation = cache_implementation, |
|
|
use_vllm = use_vllm, |
|
|
vllm_mode = vllm_mode, |
|
|
vllm_model_impl = vllm_model_impl, |
|
|
vllm_enable_sleep_mode = vllm_enable_sleep_mode, |
|
|
vllm_guided_decoding_regex = vllm_guided_decoding_regex, |
|
|
vllm_server_base_url = vllm_server_base_url, |
|
|
vllm_server_host = vllm_server_host, |
|
|
vllm_server_port = vllm_server_port, |
|
|
vllm_server_timeout = vllm_server_timeout, |
|
|
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, |
|
|
vllm_tensor_parallel_size = vllm_tensor_parallel_size, |
|
|
beta = beta, |
|
|
num_iterations = num_iterations, |
|
|
epsilon = epsilon, |
|
|
epsilon_high = epsilon_high, |
|
|
reward_weights = reward_weights, |
|
|
normalize_advantages = normalize_advantages, |
|
|
reward_clip_range = reward_clip_range, |
|
|
mask_truncated_completions = mask_truncated_completions, |
|
|
sync_ref_model = sync_ref_model, |
|
|
ref_model_mixup_alpha = ref_model_mixup_alpha, |
|
|
ref_model_sync_steps = ref_model_sync_steps, |
|
|
log_completions = log_completions, |
|
|
num_completions_to_print = num_completions_to_print, |
|
|
wandb_log_unique_prompts = wandb_log_unique_prompts, |
|
|
rloo_k = rloo_k, |
|
|
cliprange = cliprange, |
|
|
kl_coef = kl_coef, |
|
|
exp_name = exp_name, |
|
|
normalize_reward = normalize_reward, |
|
|
num_ppo_epochs = num_ppo_epochs, |
|
|
num_mini_batches = num_mini_batches, |
|
|
total_episodes = total_episodes, |
|
|
response_length = response_length, |
|
|
token_level_kl = token_level_kl, |
|
|
dataset_num_proc = dataset_num_proc, |
|
|
local_rollout_forward_batch_size = local_rollout_forward_batch_size, |
|
|
num_sample_generations = num_sample_generations, |
|
|
stop_token = stop_token, |
|
|
stop_token_id = stop_token_id, |
|
|
missing_eos_penalty = missing_eos_penalty,**kwargs) |
|
|
self.vllm_sampling_params = vllm_sampling_params |
|
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
|
|
|
|
pass |
|
|
|
|
|
class _UnslothRLOOTrainer(BaseTrainer): |
|
|
"""""" |
|
|
|
|
|
_tag_names = ["trl", "rloo"] |
|
|
_name = "RLOO" |
|
|
_paper = { |
|
|
"title": "Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs", |
|
|
"id": "2402.14740", |
|
|
|
|
|
"citation": textwrap.dedent("""\ |
|
|
@inproceedings{ahmadian2024back, |
|
|
title = {{Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs}}, |
|
|
author = {Arash Ahmadian and Chris Cremer and Matthias Gall{\'{e}} and Marzieh Fadaee and Julia Kreutzer and Olivier Pietquin and Ahmet {\"{U}}st{\"{u}}n and Sara Hooker}, |
|
|
year = 2024, |
|
|
booktitle = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), {ACL} 2024, Bangkok, Thailand, August 11-16, 2024}, |
|
|
pages = {12248--12267}, |
|
|
publisher = {Association for Computational Linguistics}, |
|
|
editor = {Lun{-}Wei Ku and Andre Martins and Vivek Srikumar}, |
|
|
}"""), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
|
|
|
model: Union[str, PreTrainedModel] = None, |
|
|
reward_funcs: Union[RewardFunc, list[RewardFunc]] = None, |
|
|
args: Optional[RLOOConfig] = None, |
|
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
|
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, |
|
|
processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None, |
|
|
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, |
|
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
|
peft_config: Optional["PeftConfig"] = None, |
|
|
|
|
|
config=None, |
|
|
reward_model=None, |
|
|
policy=None, |
|
|
ref_policy=None, |
|
|
data_collator=None, |
|
|
): |
|
|
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'): |
|
|
if (getattr(args, 'use_vllm', False) == False): |
|
|
args.use_vllm = True |
|
|
if not os.environ.get("TRL_EXPERIMENTAL_SILENCE"): |
|
|
warnings.warn( |
|
|
"This trainer will soon be moved to trl.experimental and is a candidate for removal. If you rely on " |
|
|
"it and want it to remain, please share your comments here: " |
|
|
"https://github.com/huggingface/trl/issues/4223. Silence this warning by setting environment variable " |
|
|
"TRL_EXPERIMENTAL_SILENCE=1." |
|
|
) |
|
|
|
|
|
if config is not None: |
|
|
warnings.warn( |
|
|
"Parameter 'config' is deprecated and will be removed in version 0.25.0. Please use 'args' instead. " |
|
|
"We are setting args=config" |
|
|
) |
|
|
if args is None: |
|
|
args = config |
|
|
else: |
|
|
raise ValueError("Cannot specify both 'config' (deprecated) and 'args'. Please use 'args' only.") |
|
|
|
|
|
if reward_model is not None: |
|
|
warnings.warn( |
|
|
"Parameter 'reward_model' is deprecated and will be removed in version 0.25.0. Please use " |
|
|
"'reward_funcs' instead. We are setting reward_funcs=reward_model" |
|
|
) |
|
|
if reward_funcs is None: |
|
|
reward_funcs = reward_model |
|
|
else: |
|
|
raise ValueError( |
|
|
"Cannot specify both 'reward_model' (deprecated) and 'reward_funcs'. Please use 'reward_funcs' " |
|
|
"only." |
|
|
) |
|
|
if policy is not None: |
|
|
warnings.warn( |
|
|
"Parameter 'policy' is deprecated and will be removed in version 0.25.0. Please use 'model' instead. " |
|
|
"We are setting model=policy" |
|
|
) |
|
|
if model is None: |
|
|
model = policy |
|
|
else: |
|
|
raise ValueError("Cannot specify both 'policy' (deprecated) and 'model'. Please use 'model' only.") |
|
|
if ref_policy is not None: |
|
|
warnings.warn( |
|
|
"Parameter 'ref_policy' is deprecated and will be removed in version 0.25.0. To use the initial model " |
|
|
"as the reference model, simply omit this parameter. The parameter is ignored." |
|
|
) |
|
|
if data_collator is not None: |
|
|
warnings.warn( |
|
|
"Parameter 'data_collator' is deprecated and will be removed in version 0.25.0. The RLOOTrainer does " |
|
|
"not use a data collator, so this parameter is ignored." |
|
|
) |
|
|
if "input_ids" in train_dataset.column_names: |
|
|
warnings.warn( |
|
|
"The training dataset contains a column named 'input_ids', indicating that it is pre-tokenized. " |
|
|
"Support for pre-tokenized datasets is deprecated and will be removed in version 0.25. Please provide " |
|
|
"the raw dataset (conversational or standard) with a 'prompt' column instead." |
|
|
) |
|
|
|
|
|
def decode(example, tokenizer): |
|
|
return {"prompt": tokenizer.decode(example["input_ids"])} |
|
|
|
|
|
train_dataset = train_dataset.map(decode, fn_kwargs={"tokenizer": processing_class}) |
|
|
if eval_dataset is not None and "input_ids" in eval_dataset.column_names: |
|
|
warnings.warn( |
|
|
"The evaluation dataset contains a column named 'input_ids', indicating that it is pre-tokenized. " |
|
|
"Support for pre-tokenized datasets is deprecated and will be removed in version 0.25. Please provide " |
|
|
"the raw dataset (conversational or standard) with a 'prompt' column instead." |
|
|
) |
|
|
|
|
|
def decode(example, tokenizer): |
|
|
return {"prompt": tokenizer.decode(example["input_ids"])} |
|
|
|
|
|
eval_dataset = eval_dataset.map(decode, fn_kwargs={"tokenizer": processing_class}) |
|
|
|
|
|
|
|
|
if args is None: |
|
|
model_name = model if isinstance(model, str) else model.config._name_or_path |
|
|
model_name = model_name.split("/")[-1] |
|
|
args = RLOOConfig(f"{model_name}-RLOO") |
|
|
|
|
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
if isinstance(model, str): |
|
|
model_id = model |
|
|
dtype = model_init_kwargs.get("dtype") |
|
|
if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None: |
|
|
pass |
|
|
elif isinstance(dtype, str): |
|
|
dtype = getattr(torch, dtype) |
|
|
model_init_kwargs["dtype"] = dtype |
|
|
else: |
|
|
raise ValueError( |
|
|
"Invalid `dtype` passed to `RLOOConfig`. Expected either 'auto' or a string representing " |
|
|
f"a `torch.dtype` (e.g., 'float32'), but got {dtype}." |
|
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_id) |
|
|
architecture = getattr(transformers, config.architectures[0]) |
|
|
model = architecture.from_pretrained(model_id, **model_init_kwargs) |
|
|
else: |
|
|
model_id = model.config._name_or_path |
|
|
if args.model_init_kwargs is not None: |
|
|
logger.warning( |
|
|
"You passed `model_init_kwargs` to the `RLOOConfig`, but your model is already instantiated. " |
|
|
"The `model_init_kwargs` will be ignored." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.model_kwarg_keys = ( |
|
|
inspect.signature(model.forward).parameters.keys() |
|
|
if not hasattr(model, "get_base_model") |
|
|
else inspect.signature(model.get_base_model().forward).parameters.keys() |
|
|
) |
|
|
|
|
|
if False: |
|
|
model = prepare_peft_model(model, peft_config, args) |
|
|
|
|
|
|
|
|
if processing_class is None: |
|
|
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path, truncation_side="left") |
|
|
|
|
|
|
|
|
if isinstance(processing_class, ProcessorMixin): |
|
|
tokenizer = processing_class.tokenizer |
|
|
elif isinstance(processing_class, PreTrainedTokenizerBase): |
|
|
tokenizer = processing_class |
|
|
else: |
|
|
raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`") |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
self.pad_token = tokenizer.pad_token |
|
|
self.pad_token_id = tokenizer.pad_token_id |
|
|
self.eos_token_id = tokenizer.eos_token_id |
|
|
|
|
|
|
|
|
if not isinstance(reward_funcs, list): |
|
|
reward_funcs = [reward_funcs] |
|
|
self.reward_func_names = [] |
|
|
for i, reward_func in enumerate(reward_funcs): |
|
|
if isinstance(reward_func, str): |
|
|
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( |
|
|
reward_func, num_labels=1, **model_init_kwargs |
|
|
) |
|
|
if isinstance(reward_funcs[i], nn.Module): |
|
|
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1]) |
|
|
else: |
|
|
self.reward_func_names.append(reward_funcs[i].__name__) |
|
|
self.reward_funcs = reward_funcs |
|
|
|
|
|
|
|
|
if args.reward_weights is not None: |
|
|
if len(args.reward_weights) != len(reward_funcs): |
|
|
raise ValueError( |
|
|
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " |
|
|
f"functions ({len(reward_funcs)})" |
|
|
) |
|
|
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) |
|
|
else: |
|
|
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) |
|
|
|
|
|
|
|
|
if reward_processing_classes is None: |
|
|
reward_processing_classes = [None] * len(reward_funcs) |
|
|
elif not isinstance(reward_processing_classes, list): |
|
|
reward_processing_classes = [reward_processing_classes] |
|
|
if len(reward_processing_classes) != len(reward_funcs): |
|
|
raise ValueError( |
|
|
f"The number of reward processing classes ({len(reward_processing_classes)}) must match the number of " |
|
|
f"reward functions ({len(reward_funcs)})." |
|
|
) |
|
|
|
|
|
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
if reward_processing_class is None: |
|
|
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) |
|
|
if reward_processing_class.pad_token_id is None: |
|
|
reward_processing_class.pad_token = reward_processing_class.eos_token |
|
|
|
|
|
|
|
|
reward_func.config.pad_token_id = reward_processing_class.pad_token_id |
|
|
reward_processing_classes[i] = reward_processing_class |
|
|
|
|
|
self.reward_processing_classes = reward_processing_classes |
|
|
|
|
|
|
|
|
self.max_prompt_length = args.max_prompt_length |
|
|
self.max_completion_length = args.max_completion_length |
|
|
self.num_generations = args.num_generations |
|
|
self.temperature = args.temperature |
|
|
self.top_p = args.top_p |
|
|
self.top_k = args.top_k |
|
|
self.min_p = args.min_p |
|
|
self.repetition_penalty = args.repetition_penalty |
|
|
self.use_transformers_paged = args.use_transformers_paged |
|
|
self.use_vllm = args.use_vllm |
|
|
self.vllm_mode = args.vllm_mode |
|
|
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization |
|
|
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size |
|
|
self.normalize_advantages = args.normalize_advantages |
|
|
self.mask_truncated_completions = args.mask_truncated_completions |
|
|
self.reward_clip_range = args.reward_clip_range |
|
|
|
|
|
|
|
|
self.shuffle_dataset = args.shuffle_dataset |
|
|
|
|
|
if ( |
|
|
isinstance(train_dataset, IterableDataset) |
|
|
or isinstance(eval_dataset, IterableDataset) |
|
|
or ( |
|
|
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values()) |
|
|
) |
|
|
): |
|
|
|
|
|
raise NotImplementedError( |
|
|
"Iterable datasets are not yet supported in RLOOTrainer. Please use a standard dataset instead." |
|
|
) |
|
|
|
|
|
|
|
|
self.num_iterations = args.num_iterations |
|
|
self.epsilon_low = args.epsilon |
|
|
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon |
|
|
|
|
|
self._step = 0 |
|
|
|
|
|
|
|
|
self._buffered_inputs = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
|
|
super().__init__( |
|
|
model=model, |
|
|
args=args, |
|
|
data_collator=identity, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
processing_class=processing_class, |
|
|
callbacks=callbacks, |
|
|
optimizers=optimizers, |
|
|
) |
|
|
|
|
|
|
|
|
self.beta = args.beta |
|
|
if self.beta == 0.0: |
|
|
|
|
|
self.ref_model = None |
|
|
elif is_peft_model(model): |
|
|
|
|
|
|
|
|
self.ref_model = None |
|
|
else: |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_id) |
|
|
architecture = getattr(transformers, config.architectures[0]) |
|
|
self.ref_model = architecture.from_pretrained(model_id, **model_init_kwargs) |
|
|
|
|
|
|
|
|
if args.disable_dropout: |
|
|
disable_dropout_in_model(model) |
|
|
if self.ref_model is not None: |
|
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
|
|
|
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} |
|
|
self._total_train_tokens = 0 |
|
|
self.log_completions = args.log_completions |
|
|
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts |
|
|
self.num_completions_to_print = args.num_completions_to_print |
|
|
|
|
|
self._logs = { |
|
|
"images": deque(maxlen=args.generation_batch_size), |
|
|
"prompt": deque(maxlen=args.generation_batch_size), |
|
|
"completion": deque(maxlen=args.generation_batch_size), |
|
|
"rewards": defaultdict(lambda: deque(maxlen=args.generation_batch_size)), |
|
|
"advantages": deque(maxlen=args.generation_batch_size), |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set_seed(args.seed, device_specific=True) |
|
|
|
|
|
if self.use_vllm: |
|
|
if not is_vllm_available(): |
|
|
raise ImportError( |
|
|
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with " |
|
|
"`pip install trl[vllm]` to use it." |
|
|
) |
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
if self.accelerator.is_main_process: |
|
|
if args.vllm_server_base_url is not None: |
|
|
base_url = args.vllm_server_base_url |
|
|
else: |
|
|
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}" |
|
|
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout) |
|
|
self.vllm_client.init_communicator(device=torch.cuda.current_device()) |
|
|
|
|
|
elif self.vllm_mode == "colocate": |
|
|
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0: |
|
|
raise ValueError( |
|
|
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size " |
|
|
f"({self.accelerator.num_processes}) evenly." |
|
|
) |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration( |
|
|
[ |
|
|
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size)) |
|
|
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size) |
|
|
] |
|
|
) |
|
|
os.environ["RANK"] = str(self.accelerator.process_index) |
|
|
os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index) |
|
|
os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes) |
|
|
ensure_master_addr_port() |
|
|
|
|
|
if self.max_prompt_length is not None and self.max_completion_length is not None: |
|
|
max_model_len = self.max_prompt_length + self.max_completion_length |
|
|
else: |
|
|
max_model_len = None |
|
|
self.llm = model.vllm_engine |
|
|
if self.args.vllm_enable_sleep_mode: |
|
|
self.llm.sleep(level=1) |
|
|
else: |
|
|
raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.") |
|
|
self.guided_decoding_regex = args.vllm_guided_decoding_regex |
|
|
|
|
|
self._last_loaded_step = -1 |
|
|
self.accelerator.wait_for_everyone() |
|
|
else: |
|
|
generation_kwargs = { |
|
|
"max_new_tokens": self.max_completion_length, |
|
|
"do_sample": True, |
|
|
"pad_token_id": tokenizer.pad_token_id, |
|
|
"bos_token_id": tokenizer.bos_token_id, |
|
|
"eos_token_id": tokenizer.eos_token_id, |
|
|
"temperature": self.temperature, |
|
|
"top_p": self.top_p, |
|
|
"top_k": self.top_k, |
|
|
"min_p": self.min_p, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"cache_implementation": args.cache_implementation, |
|
|
} |
|
|
if args.generation_kwargs is not None: |
|
|
generation_kwargs.update(args.generation_kwargs) |
|
|
self.generation_config = GenerationConfig(**generation_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model_accepts_loss_kwargs = False |
|
|
|
|
|
|
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
|
|
if self.ref_model is not None: |
|
|
if self.is_deepspeed_enabled: |
|
|
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) |
|
|
elif self.is_fsdp_enabled: |
|
|
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator) |
|
|
else: |
|
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
|
|
if args.sync_ref_model: |
|
|
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) |
|
|
|
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
|
if isinstance(reward_func, PreTrainedModel): |
|
|
if self.is_deepspeed_enabled: |
|
|
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator) |
|
|
else: |
|
|
|
|
|
self.reward_funcs[i] = self.accelerator.prepare_model( |
|
|
reward_func, evaluation_mode=True, device_placement=True |
|
|
) |
|
|
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
|
self._signature_columns = ["prompt", "image", "images"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_train_dataloader(self): |
|
|
if self.train_dataset is None: |
|
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
|
|
train_dataset = self.train_dataset |
|
|
data_collator = self.data_collator |
|
|
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset): |
|
|
train_dataset = self._remove_unused_columns(train_dataset, description="training") |
|
|
else: |
|
|
data_collator = self._get_collator_with_removed_columns(data_collator, description="training") |
|
|
|
|
|
dataloader_params = { |
|
|
"batch_size": self._train_batch_size * self.args.steps_per_generation, |
|
|
"collate_fn": data_collator, |
|
|
"num_workers": self.args.dataloader_num_workers, |
|
|
"pin_memory": self.args.dataloader_pin_memory, |
|
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
|
} |
|
|
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
|
dataloader_params["worker_init_fn"] = partial( |
|
|
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index |
|
|
) |
|
|
|
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
|
|
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dataset is None: |
|
|
dataset = self.train_dataset |
|
|
return RepeatSampler( |
|
|
data_source=dataset, |
|
|
mini_repeat_count=self.num_generations, |
|
|
batch_size=self.args.generation_batch_size // self.num_generations, |
|
|
repeat_count=self.num_iterations * self.args.steps_per_generation, |
|
|
shuffle=self.shuffle_dataset, |
|
|
seed=self.args.seed, |
|
|
) |
|
|
|
|
|
def _get_eval_sampler(self, eval_dataset) -> Sampler: |
|
|
|
|
|
return RepeatSampler( |
|
|
data_source=eval_dataset, |
|
|
mini_repeat_count=self.num_generations, |
|
|
seed=self.args.seed, |
|
|
) |
|
|
|
|
|
@profiling_decorator |
|
|
def _get_per_token_logps_and_entropies( |
|
|
self, |
|
|
model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size=None, |
|
|
compute_entropy=False, |
|
|
pixel_values=None, |
|
|
image_grid_thw=None, |
|
|
num_images=None, |
|
|
pixel_attention_mask=None, |
|
|
image_sizes=None, |
|
|
token_type_ids=None, |
|
|
) -> dict[str, Optional[torch.Tensor]]: |
|
|
"""Compute log-probs and (optionally) entropies for each token.""" |
|
|
batch_size = batch_size or input_ids.size(0) |
|
|
all_logps = [] |
|
|
all_entropies = [] |
|
|
for start in range(0, input_ids.size(0), batch_size): |
|
|
input_ids_batch = input_ids[start : start + batch_size] |
|
|
attention_mask_batch = attention_mask[start : start + batch_size] |
|
|
|
|
|
|
|
|
model_inputs = {"input_ids": input_ids_batch, "attention_mask": attention_mask_batch} |
|
|
|
|
|
if image_grid_thw is not None and pixel_values is not None: |
|
|
rows_per_image = image_grid_thw.prod(dim=-1) |
|
|
rows_per_sample = torch.split(rows_per_image, num_images) |
|
|
rows_per_sample = torch.stack([s.sum() for s in rows_per_sample]) |
|
|
cum_rows = torch.cat([torch.tensor([0], device=rows_per_sample.device), rows_per_sample.cumsum(0)]) |
|
|
row_start, row_end = cum_rows[start].item(), cum_rows[start + batch_size].item() |
|
|
model_inputs["pixel_values"] = pixel_values[row_start:row_end] |
|
|
cum_imgs = torch.tensor([0] + num_images).cumsum(0) |
|
|
img_start, img_end = cum_imgs[start], cum_imgs[start + batch_size] |
|
|
model_inputs["image_grid_thw"] = image_grid_thw[img_start:img_end] |
|
|
elif pixel_values is not None: |
|
|
model_inputs["pixel_values"] = pixel_values[start : start + batch_size] |
|
|
if pixel_attention_mask is not None: |
|
|
model_inputs["pixel_attention_mask"] = pixel_attention_mask[start : start + batch_size] |
|
|
if image_sizes is not None: |
|
|
model_inputs["image_sizes"] = image_sizes[start : start + batch_size] |
|
|
if token_type_ids is not None: |
|
|
model_inputs["token_type_ids"] = token_type_ids[start : start + batch_size] |
|
|
|
|
|
|
|
|
if "logits_to_keep" in self.model_kwarg_keys: |
|
|
|
|
|
model_inputs["logits_to_keep"] = logits_to_keep + 1 |
|
|
|
|
|
model_inputs["use_cache"] = False |
|
|
|
|
|
logits = model(**model_inputs).logits |
|
|
|
|
|
logits = logits[:, :-1, :] |
|
|
|
|
|
logits = logits[:, -logits_to_keep:, :] |
|
|
|
|
|
|
|
|
logits = logits / self.temperature |
|
|
|
|
|
completion_ids = input_ids_batch[:, -logits_to_keep:] |
|
|
logps = selective_log_softmax(logits, completion_ids) |
|
|
all_logps.append(logps) |
|
|
|
|
|
if compute_entropy: |
|
|
with torch.no_grad(): |
|
|
entropies = entropy_from_logits(logits) |
|
|
all_entropies.append(entropies) |
|
|
|
|
|
logps = torch.cat(all_logps, dim=0) |
|
|
entropies = torch.cat(all_entropies, dim=0) if compute_entropy else None |
|
|
return logps, entropies |
|
|
|
|
|
def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None): |
|
|
extra_prefixes = extra_prefixes or [] |
|
|
prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes |
|
|
for prefix in prefixes: |
|
|
name = name.replace(prefix, "") |
|
|
return name |
|
|
|
|
|
def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None): |
|
|
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM.""" |
|
|
|
|
|
if visited is None: |
|
|
visited = set() |
|
|
for child_name, child_module in module.named_children(): |
|
|
child_prefix = f"{prefix}.{child_name}" if prefix else child_name |
|
|
self._sync_fsdp1_params_to_vllm( |
|
|
child_module, prefix=child_prefix, visited=visited |
|
|
) |
|
|
|
|
|
if isinstance(module, FSDP): |
|
|
with FSDP.summon_full_params(module, recurse=False, writeback=False): |
|
|
for param_name, param in module.named_parameters(): |
|
|
full_name = f"{prefix}.{param_name}" if prefix else param_name |
|
|
full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."]) |
|
|
|
|
|
if full_name in visited: |
|
|
continue |
|
|
visited.add(full_name) |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(full_name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
def _sync_fsdp2_params_to_vllm(self, module: nn.Module): |
|
|
|
|
|
for name, param in module.items(): |
|
|
if param.is_cpu: |
|
|
param = param.to(torch.device("cuda")) |
|
|
param = param.full_tensor() |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
@profiling_decorator |
|
|
def _move_model_to_vllm(self): |
|
|
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin |
|
|
zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3 |
|
|
if zero_stage_3: |
|
|
import deepspeed |
|
|
|
|
|
gather_if_zero3 = deepspeed.zero.GatheredParameters |
|
|
else: |
|
|
gather_if_zero3 = nullcontext |
|
|
|
|
|
if is_peft_model(self.model): |
|
|
|
|
|
|
|
|
|
|
|
with gather_if_zero3(list(self.model.parameters())): |
|
|
self.model.merge_adapter() |
|
|
|
|
|
|
|
|
if self.is_fsdp_enabled: |
|
|
|
|
|
|
|
|
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) |
|
|
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 |
|
|
if fsdp_version == 1: |
|
|
self._sync_fsdp1_params_to_vllm( |
|
|
self.model |
|
|
) |
|
|
elif fsdp_version == 2: |
|
|
self._sync_fsdp2_params_to_vllm(self.model) |
|
|
else: |
|
|
|
|
|
for name, param in self.model.named_parameters(): |
|
|
|
|
|
name = name.removeprefix("base_model.model.").replace(".base_layer", "") |
|
|
if self.model.prefix in name: |
|
|
continue |
|
|
|
|
|
if "original_module" in name: |
|
|
continue |
|
|
name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."]) |
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
self.model.unmerge_adapter() |
|
|
|
|
|
else: |
|
|
|
|
|
if self.is_fsdp_enabled: |
|
|
fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None) |
|
|
fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1 |
|
|
if fsdp_version == 1: |
|
|
self._sync_fsdp1_params_to_vllm(self.model) |
|
|
elif fsdp_version == 2: |
|
|
self._sync_fsdp2_params_to_vllm(self.model) |
|
|
else: |
|
|
for name, param in self.model.named_parameters(): |
|
|
name = self._fix_param_name_to_vllm(name) |
|
|
with gather_if_zero3([param]): |
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.update_named_param(name, param.data) |
|
|
elif self.vllm_mode == "colocate": |
|
|
|
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if self.vllm_mode == "server" and self.accelerator.is_main_process: |
|
|
self.vllm_client.reset_prefix_cache() |
|
|
elif self.vllm_mode == "colocate": |
|
|
self.llm.reset_prefix_cache() |
|
|
|
|
|
@profiling_decorator |
|
|
def _prepare_inputs( |
|
|
self, generation_batch: dict[str, Union[torch.Tensor, Any]] |
|
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
if mode == "train": |
|
|
generate_every = self.args.steps_per_generation * self.num_iterations |
|
|
if self._step % generate_every == 0 or self._buffered_inputs is None: |
|
|
|
|
|
generation_batch = self._generate_and_score_completions(generation_batch) |
|
|
generation_batch = split_pixel_values_by_grid(generation_batch) |
|
|
|
|
|
try: generation_batch = shuffle_sequence_dict(generation_batch) |
|
|
|
|
|
except: pass |
|
|
generation_batches = split_tensor_dict(generation_batch, self.args.steps_per_generation) |
|
|
self._buffered_inputs = [unsplit_pixel_values_by_grid(batch) for batch in generation_batches] |
|
|
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation] |
|
|
self._step += 1 |
|
|
else: |
|
|
|
|
|
|
|
|
inputs = self._generate_and_score_completions(generation_batch) |
|
|
return inputs |
|
|
|
|
|
@profiling_decorator |
|
|
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list): |
|
|
device = self.accelerator.device |
|
|
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) |
|
|
|
|
|
|
|
|
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]] |
|
|
reward_kwargs = {key: [example[key] for example in inputs] for key in keys} |
|
|
|
|
|
|
|
|
reward_kwargs["trainer_state"] = self.state |
|
|
|
|
|
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate( |
|
|
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names) |
|
|
): |
|
|
with profiling_context(self, reward_func_name): |
|
|
if isinstance(reward_func, nn.Module): |
|
|
if is_conversational(inputs[0]): |
|
|
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] |
|
|
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] |
|
|
else: |
|
|
texts = [p + c for p, c in zip(prompts, completions)] |
|
|
reward_inputs = reward_processing_class( |
|
|
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False |
|
|
) |
|
|
reward_inputs = super()._prepare_inputs(reward_inputs) |
|
|
with torch.inference_mode(): |
|
|
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] |
|
|
else: |
|
|
output_reward_func = reward_func( |
|
|
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs |
|
|
) |
|
|
|
|
|
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func] |
|
|
|
|
|
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
if torch.isnan(rewards_per_func).all(dim=1).any(): |
|
|
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0] |
|
|
row_reward_kwargs = { |
|
|
key: value[nan_row_idx] for key, value in reward_kwargs.items() if key != "trainer_state" |
|
|
} |
|
|
row_reward_kwargs["prompt"] = prompts[nan_row_idx] |
|
|
row_reward_kwargs["completion"] = completions[nan_row_idx] |
|
|
logger.warning( |
|
|
f"All reward functions returned None for the following kwargs:\n{row_reward_kwargs}\n" |
|
|
"Please ensure that at least one reward function returns a valid reward." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
rewards_per_func = gather(rewards_per_func) |
|
|
return rewards_per_func |
|
|
|
|
|
def _generate_single_turn(self, prompts: list[str], images: Optional[list]): |
|
|
device = self.accelerator.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kwargs = {} |
|
|
if images is not None: |
|
|
kwargs = {"images": images} |
|
|
for prompt, image_list in zip(prompts, images): |
|
|
if isinstance(prompt, list): |
|
|
prepare_multimodal_messages(prompt, num_images=len(image_list)) |
|
|
|
|
|
prompts_text = [ |
|
|
maybe_apply_chat_template({"prompt": prompt}, self.processing_class)["prompt"] for prompt in prompts |
|
|
] |
|
|
|
|
|
if images is not None: |
|
|
prompt_inputs = self.processing_class(text=prompts_text, padding=True, return_tensors="pt", **kwargs) |
|
|
prompt_inputs = super()._prepare_inputs(prompt_inputs) |
|
|
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]} |
|
|
else: |
|
|
forward_kwargs = {} |
|
|
|
|
|
|
|
|
if self.use_vllm: |
|
|
if self.vllm_mode == "colocate" and self.args.vllm_enable_sleep_mode: |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
self.llm.wake_up() |
|
|
|
|
|
|
|
|
if self.state.global_step != self._last_loaded_step: |
|
|
self._move_model_to_vllm() |
|
|
self._last_loaded_step = self.state.global_step |
|
|
|
|
|
|
|
|
if self.vllm_mode == "server": |
|
|
all_prompts_text = gather_object(prompts_text) |
|
|
if images is not None: |
|
|
all_images = gather_object(images) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
|
|
|
|
|
|
|
|
|
|
ordered_set_of_prompts = all_prompts_text[:: self.num_generations] |
|
|
|
|
|
if images is not None: |
|
|
ordered_set_of_images = all_images[:: self.num_generations] |
|
|
else: |
|
|
ordered_set_of_images = None |
|
|
|
|
|
with profiling_context(self, "vLLM.generate"): |
|
|
output = self.vllm_client.generate( |
|
|
prompts=ordered_set_of_prompts, |
|
|
images=ordered_set_of_images, |
|
|
n=self.num_generations, |
|
|
repetition_penalty=self.repetition_penalty, |
|
|
temperature=self.temperature, |
|
|
top_p=self.top_p, |
|
|
top_k=-1 if self.top_k is None else self.top_k, |
|
|
min_p=0.0 if self.min_p is None else self.min_p, |
|
|
max_tokens=self.max_completion_length, |
|
|
truncate_prompt_tokens=self.max_prompt_length, |
|
|
guided_decoding_regex=self.guided_decoding_regex, |
|
|
generation_kwargs=self.args.generation_kwargs, |
|
|
) |
|
|
payload = (output["prompt_ids"], output["completion_ids"], output["logprobs"]) |
|
|
else: |
|
|
payload = None |
|
|
|
|
|
|
|
|
obj_list = [payload] |
|
|
broadcast_object_list(obj_list, from_process=0) |
|
|
all_prompt_ids, all_completion_ids, _ = obj_list[0] |
|
|
|
|
|
|
|
|
all_prompt_ids = [ids for ids in all_prompt_ids for _ in range(self.num_generations)] |
|
|
|
|
|
process_slice = slice( |
|
|
self.accelerator.process_index * len(prompts), |
|
|
(self.accelerator.process_index + 1) * len(prompts), |
|
|
) |
|
|
prompt_ids = all_prompt_ids[process_slice] |
|
|
completion_ids = all_completion_ids[process_slice] |
|
|
|
|
|
|
|
|
elif self.vllm_mode == "colocate": |
|
|
if self.guided_decoding_regex: |
|
|
guided_decoding = GuidedDecodingParams(regex=self.guided_decoding_regex) |
|
|
else: |
|
|
guided_decoding = None |
|
|
|
|
|
generation_kwargs = { |
|
|
"n": 1, |
|
|
"repetition_penalty": self.repetition_penalty, |
|
|
"temperature": self.temperature, |
|
|
"top_p": self.top_p, |
|
|
"top_k": -1 if self.top_k is None else self.top_k, |
|
|
"min_p": 0.0 if self.min_p is None else self.min_p, |
|
|
"max_tokens": self.max_completion_length, |
|
|
"truncate_prompt_tokens": self.max_prompt_length, |
|
|
"guided_decoding": guided_decoding, |
|
|
} |
|
|
if self.args.generation_kwargs is not None: |
|
|
generation_kwargs.update(self.args.generation_kwargs) |
|
|
sampling_params = SamplingParams(**grpo_update_SamplingParams(SamplingParams, generation_kwargs, getattr(self.args, 'vllm_sampling_params', None))) |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
|
|
|
orig_size = len(prompts_text) |
|
|
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)] |
|
|
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group) |
|
|
all_prompts_text = [p for sublist in gathered_prompts for p in sublist] |
|
|
|
|
|
if images is not None: |
|
|
gathered_images = [None for _ in range(self.vllm_tensor_parallel_size)] |
|
|
torch.distributed.all_gather_object(gathered_images, images, group=self.tp_group) |
|
|
all_images = [img for sublist in gathered_images for img in sublist] |
|
|
else: |
|
|
all_images = None |
|
|
else: |
|
|
all_prompts_text = prompts_text |
|
|
all_images = images |
|
|
|
|
|
if images is not None and all_images: |
|
|
vllm_inputs = [] |
|
|
for prompt, image_list in zip(all_prompts_text, all_images): |
|
|
vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image_list}}) |
|
|
|
|
|
else: |
|
|
vllm_inputs = all_prompts_text |
|
|
|
|
|
with profiling_context(self, "vLLM.generate"): |
|
|
all_outputs = self.llm.generate(vllm_inputs, sampling_params=sampling_params, use_tqdm=False, lora_request = self.model.load_lora('rloo_trainer_lora_model', load_tensors = True)) |
|
|
|
|
|
all_prompt_ids = [output.prompt_token_ids for output in all_outputs] |
|
|
all_completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs] |
|
|
|
|
|
if self.vllm_tensor_parallel_size > 1: |
|
|
|
|
|
|
|
|
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group) |
|
|
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size) |
|
|
prompt_ids = all_prompt_ids[tp_slice] |
|
|
completion_ids = all_completion_ids[tp_slice] |
|
|
else: |
|
|
prompt_ids = all_prompt_ids |
|
|
completion_ids = all_completion_ids |
|
|
|
|
|
if self.args.vllm_enable_sleep_mode: |
|
|
self.llm.sleep(level=1) |
|
|
|
|
|
elif self.use_transformers_paged: |
|
|
|
|
|
|
|
|
paged_prompt_inputs = self.processing_class(text=prompts_text, **kwargs) |
|
|
previous_attn = self.model_wrapped.config._attn_implementation |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
|
self.model_wrapped.config._attn_implementation = "paged_attention" |
|
|
else: |
|
|
self.model_wrapped.config._attn_implementation = "sdpa_paged" |
|
|
with ( |
|
|
profiling_context(self, "transformers.generate_batch"), |
|
|
unwrap_model_for_generation( |
|
|
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
|
|
|
if self.args.bf16: |
|
|
unwrapped_model.to(torch.bfloat16) |
|
|
elif self.args.fp16: |
|
|
unwrapped_model.to(torch.float16) |
|
|
with torch.inference_mode(): |
|
|
all_outputs = unwrapped_model.generate_batch( |
|
|
paged_prompt_inputs.input_ids, generation_config=self.generation_config, progress_bar=False |
|
|
) |
|
|
unwrapped_model.train() |
|
|
completion_ids = [output.generated_tokens for output in all_outputs.values()] |
|
|
prompt_ids = paged_prompt_inputs.input_ids |
|
|
|
|
|
self.model_wrapped.config._attn_implementation = previous_attn |
|
|
|
|
|
else: |
|
|
|
|
|
generate_inputs = self.processing_class( |
|
|
text=prompts_text, |
|
|
return_tensors="pt", |
|
|
padding=True, |
|
|
padding_side="left", |
|
|
max_length=self.max_prompt_length, |
|
|
truncation=True, |
|
|
add_special_tokens=False, |
|
|
**kwargs, |
|
|
) |
|
|
generate_inputs = super()._prepare_inputs(generate_inputs) |
|
|
|
|
|
with ( |
|
|
profiling_context(self, "transformers.generate"), |
|
|
unwrap_model_for_generation( |
|
|
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
|
) as unwrapped_model, |
|
|
torch.no_grad(), |
|
|
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(), |
|
|
): |
|
|
prompt_completion_ids = unwrapped_model.generate( |
|
|
**generate_inputs, generation_config=self.generation_config, disable_compile=True |
|
|
) |
|
|
|
|
|
prompt_ids, prompt_mask = generate_inputs["input_ids"], generate_inputs["attention_mask"] |
|
|
prompt_length = prompt_ids.size(1) |
|
|
completion_ids = prompt_completion_ids[:, prompt_length:] |
|
|
|
|
|
|
|
|
is_eos = completion_ids == self.eos_token_id |
|
|
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) |
|
|
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] |
|
|
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) |
|
|
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() |
|
|
prompt_ids = [p[m].tolist() for p, m in zip(prompt_ids, prompt_mask.bool())] |
|
|
completion_ids = [c[m].tolist() for c, m in zip(completion_ids, completion_mask.bool())] |
|
|
|
|
|
return prompt_ids, completion_ids, forward_kwargs |
|
|
|
|
|
def _generate(self, prompts: list[str], images: Optional[list]): |
|
|
device = self.accelerator.device |
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
prompt_ids, completion_ids, forward_kwargs = self._generate_single_turn(prompts, images) |
|
|
|
|
|
|
|
|
prompt_lengths = torch.tensor([len(ids) for ids in prompt_ids], device=device) |
|
|
completion_lengths = torch.tensor([len(ids) for ids in completion_ids], device=device) |
|
|
agg_prompt_lengths = self.accelerator.gather(prompt_lengths) |
|
|
agg_completion_lengths = self.accelerator.gather(completion_lengths) |
|
|
total_prompt_tokens = agg_prompt_lengths.sum() |
|
|
total_completion_tokens = agg_completion_lengths.sum() |
|
|
|
|
|
|
|
|
if mode == "train": |
|
|
self.state.num_input_tokens_seen += (total_prompt_tokens + total_completion_tokens).item() |
|
|
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen] |
|
|
|
|
|
|
|
|
agg_completion_lengths = self.accelerator.gather(completion_lengths) |
|
|
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item()) |
|
|
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item()) |
|
|
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item()) |
|
|
|
|
|
|
|
|
eos_and_pad = [self.eos_token_id, self.pad_token_id] |
|
|
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids], device=device) |
|
|
agg_is_truncated = self.accelerator.gather(is_truncated) |
|
|
self._metrics[mode]["completions/clipped_ratio"].append(agg_is_truncated.float().mean().item()) |
|
|
term_completion_lengths = agg_completion_lengths[~agg_is_truncated] |
|
|
if len(term_completion_lengths) == 0: |
|
|
term_completion_lengths = torch.zeros(1, device=device) |
|
|
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item()) |
|
|
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item()) |
|
|
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item()) |
|
|
|
|
|
return prompt_ids, completion_ids, forward_kwargs |
|
|
|
|
|
def _generate_and_score_completions( |
|
|
self, inputs: list[dict[str, Union[torch.Tensor, Any]]] |
|
|
) -> dict[str, Union[torch.Tensor, Any]]: |
|
|
device = self.accelerator.device |
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
prompts = [x["prompt"] for x in inputs] |
|
|
|
|
|
if "images" in inputs[0]: |
|
|
images = [example.get("images") for example in inputs] |
|
|
elif "image" in inputs[0]: |
|
|
images = [[example.get("image")] if example.get("image") is not None else None for example in inputs] |
|
|
else: |
|
|
images = None |
|
|
|
|
|
if images is not None and all(img_list == [] for img_list in images): |
|
|
images = None |
|
|
|
|
|
prompt_ids_list, completion_ids_list, forward_kwargs = self._generate(prompts, images) |
|
|
|
|
|
|
|
|
prompt_ids = [torch.tensor(ids, device=device) for ids in prompt_ids_list] |
|
|
prompt_mask = [torch.ones_like(ids, dtype=torch.long) for ids in prompt_ids] |
|
|
prompt_ids = pad(prompt_ids, padding_value=self.pad_token_id, padding_side="left") |
|
|
prompt_mask = pad(prompt_mask, padding_value=0, padding_side="left") |
|
|
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids_list] |
|
|
completion_mask = [torch.ones_like(ids, dtype=torch.long) for ids in completion_ids] |
|
|
completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right") |
|
|
completion_mask = pad(completion_mask, padding_value=0, padding_side="right") |
|
|
|
|
|
|
|
|
if self.mask_truncated_completions: |
|
|
eos_and_pad = [self.eos_token_id, self.pad_token_id] |
|
|
is_truncated = torch.tensor([ids[-1] not in eos_and_pad for ids in completion_ids_list], device=device) |
|
|
completion_mask = completion_mask * (~is_truncated).unsqueeze(1).int() |
|
|
|
|
|
|
|
|
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
|
|
|
if "token_type_ids" in forward_kwargs: |
|
|
token_type_ids = forward_kwargs["token_type_ids"] |
|
|
forward_kwargs["token_type_ids"] = torch.cat( |
|
|
[token_type_ids, token_type_ids.new_zeros(completion_ids.shape)], dim=1 |
|
|
) |
|
|
|
|
|
logits_to_keep = completion_ids.size(1) |
|
|
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size |
|
|
|
|
|
num_images = [len(img_list) for img_list in images] if images is not None else None |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
old_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
old_logps = (old_per_token_logps * completion_mask).sum(1) |
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
|
if self.ref_model is not None: |
|
|
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.ref_model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size=batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
else: |
|
|
with self.accelerator.unwrap_model(self.model).disable_adapter(): |
|
|
ref_per_token_logps, _ = self._get_per_token_logps_and_entropies( |
|
|
self.model, |
|
|
prompt_completion_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
batch_size=batch_size, |
|
|
num_images=num_images, |
|
|
**forward_kwargs, |
|
|
) |
|
|
else: |
|
|
ref_per_token_logps = None |
|
|
|
|
|
|
|
|
prompts_text = self.processing_class.batch_decode(prompt_ids, skip_special_tokens=True) |
|
|
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
|
if is_conversational(inputs[0]): |
|
|
completions = [] |
|
|
for prompt, completion in zip(prompts, completions_text): |
|
|
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" |
|
|
completions.append([{"role": "assistant", "content": bootstrap + completion}]) |
|
|
else: |
|
|
completions = completions_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rewards_per_func = self._calculate_rewards(inputs, prompts, completions, completion_ids_list) |
|
|
|
|
|
|
|
|
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1) |
|
|
|
|
|
|
|
|
if self.reward_clip_range: |
|
|
rewards = rewards.clamp(min=self.reward_clip_range[0], max=self.reward_clip_range[1]) |
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
|
per_token_kl = old_per_token_logps - ref_per_token_logps |
|
|
|
|
|
kl = (per_token_kl * completion_mask).sum(-1) |
|
|
kl = gather(kl) |
|
|
rewards = rewards - self.beta * kl |
|
|
|
|
|
grouped_rewards = rewards.view(-1, self.num_generations) |
|
|
mean_grouped_rewards = grouped_rewards.mean(dim=1) |
|
|
std_rewards = grouped_rewards.std(dim=1) |
|
|
is_std_zero = torch.isclose(std_rewards, torch.zeros_like(std_rewards)) |
|
|
|
|
|
|
|
|
grouped_sum = grouped_rewards.sum(dim=1, keepdim=True) |
|
|
baselines = (grouped_sum - grouped_rewards) / (self.num_generations - 1) |
|
|
baselines = baselines.view(-1) |
|
|
advantages = rewards - baselines |
|
|
|
|
|
|
|
|
if self.normalize_advantages: |
|
|
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-4) |
|
|
|
|
|
|
|
|
process_slice = slice( |
|
|
self.accelerator.process_index * len(prompts), |
|
|
(self.accelerator.process_index + 1) * len(prompts), |
|
|
) |
|
|
all_process_advantages = advantages.clone() |
|
|
advantages = advantages[process_slice] |
|
|
|
|
|
|
|
|
if self.beta != 0.0: |
|
|
mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum().clamp(min=1.0) |
|
|
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item()) |
|
|
|
|
|
|
|
|
for i, reward_func_name in enumerate(self.reward_func_names): |
|
|
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item() |
|
|
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards) |
|
|
std_func_rewards = nanstd(rewards_per_func[:, i]).item() |
|
|
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_func_rewards) |
|
|
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item()) |
|
|
self._metrics[mode]["reward_std"].append(std_rewards.mean().item()) |
|
|
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item()) |
|
|
|
|
|
|
|
|
self._logs["prompt"].extend(gather_object(prompts_text)) |
|
|
self._logs["completion"].extend(gather_object(completions_text)) |
|
|
for i, name in enumerate(self.reward_func_names): |
|
|
self._logs["rewards"][name].extend(rewards_per_func[:, i].tolist()) |
|
|
self._logs["advantages"].extend(all_process_advantages.tolist()) |
|
|
|
|
|
if images is not None: |
|
|
self._logs["images"].extend(gather_object(images)) |
|
|
|
|
|
output = { |
|
|
"prompt_ids": prompt_ids, |
|
|
"prompt_mask": prompt_mask, |
|
|
"completion_ids": completion_ids, |
|
|
"completion_mask": completion_mask, |
|
|
"old_logps": old_logps, |
|
|
"advantages": advantages, |
|
|
} |
|
|
if "pixel_values" in forward_kwargs: |
|
|
output["pixel_values"] = forward_kwargs["pixel_values"] |
|
|
if "image_grid_thw" in forward_kwargs: |
|
|
output["image_grid_thw"] = forward_kwargs["image_grid_thw"] |
|
|
if "pixel_attention_mask" in forward_kwargs: |
|
|
output["pixel_attention_mask"] = forward_kwargs["pixel_attention_mask"] |
|
|
if "image_sizes" in forward_kwargs: |
|
|
output["image_sizes"] = forward_kwargs["image_sizes"] |
|
|
if "token_type_ids" in forward_kwargs: |
|
|
output["token_type_ids"] = forward_kwargs["token_type_ids"] |
|
|
if images is not None: |
|
|
output["num_images"] = num_images |
|
|
return output |
|
|
|
|
|
@profiling_decorator |
|
|
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None): |
|
|
if return_outputs: |
|
|
raise ValueError("The RLOOTrainer does not support returning outputs") |
|
|
return self._compute_loss(model, inputs) |
|
|
|
|
|
def _compute_loss(self, model, inputs): |
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
logits_to_keep = completion_ids.size(1) |
|
|
|
|
|
|
|
|
per_token_logps, entropies = self._get_per_token_logps_and_entropies( |
|
|
model, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
logits_to_keep, |
|
|
compute_entropy=True, |
|
|
pixel_values=inputs.get("pixel_values"), |
|
|
image_grid_thw=inputs.get("image_grid_thw"), |
|
|
num_images=inputs.get("num_images"), |
|
|
pixel_attention_mask=inputs.get("pixel_attention_mask"), |
|
|
image_sizes=inputs.get("image_sizes"), |
|
|
token_type_ids=inputs.get("token_type_ids"), |
|
|
) |
|
|
|
|
|
logps = (per_token_logps * completion_mask).sum(1) |
|
|
old_logps = inputs["old_logps"] |
|
|
log_ratio = logps - old_logps |
|
|
|
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
coef_1 = torch.exp(log_ratio) |
|
|
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high) |
|
|
per_sequence_loss1 = coef_1 * advantages |
|
|
per_sequence_loss2 = coef_2 * advantages |
|
|
per_sequence_loss = -torch.min(per_sequence_loss1, per_sequence_loss2) |
|
|
loss = per_sequence_loss.mean() |
|
|
|
|
|
|
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
|
|
|
mean_entropy = (entropies * completion_mask).sum() / completion_mask.sum().clamp(min=1.0) |
|
|
self._metrics[mode]["entropy"].append(self.accelerator.gather(mean_entropy).nanmean().item()) |
|
|
|
|
|
|
|
|
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages < 0) |
|
|
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages > 0) |
|
|
is_region_clipped = is_low_clipped | is_high_clipped |
|
|
gathered_low_clip = self.accelerator.gather(is_low_clipped.float().mean()) |
|
|
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item()) |
|
|
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item()) |
|
|
gathered_high_clip = self.accelerator.gather(is_high_clipped.float().mean()) |
|
|
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item()) |
|
|
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item()) |
|
|
gathered_clip_ratio = self.accelerator.gather(is_region_clipped.float().mean()) |
|
|
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item()) |
|
|
return loss |
|
|
|
|
|
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): |
|
|
inputs = self._prepare_inputs(inputs) |
|
|
with torch.no_grad(): |
|
|
with self.compute_loss_context_manager(): |
|
|
loss = self.compute_loss(model, inputs) |
|
|
loss = loss.mean().detach() |
|
|
return loss, None, None |
|
|
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
|
mode = "train" if self.model.training else "eval" |
|
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} |
|
|
|
|
|
|
|
|
|
|
|
if mode == "eval": |
|
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
|
|
logs = {**logs, **metrics} |
|
|
super().log(logs, start_time) |
|
|
self._metrics[mode].clear() |
|
|
|
|
|
if self.accelerator.is_main_process and self.log_completions: |
|
|
if is_rich_available(): |
|
|
print_prompt_completions_sample( |
|
|
self._logs["prompt"], |
|
|
self._logs["completion"], |
|
|
self._logs["rewards"], |
|
|
self._logs["advantages"], |
|
|
self.state.global_step, |
|
|
self.num_completions_to_print, |
|
|
) |
|
|
|
|
|
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None: |
|
|
import pandas as pd |
|
|
|
|
|
table = { |
|
|
"step": [str(self.state.global_step)] * len(self._logs["prompt"]), |
|
|
"prompt": self._logs["prompt"], |
|
|
"completion": self._logs["completion"], |
|
|
**self._logs["rewards"], |
|
|
"advantage": self._logs["advantages"], |
|
|
} |
|
|
|
|
|
if self._logs["images"]: |
|
|
table["images"] = [] |
|
|
for image_list in self._logs["images"]: |
|
|
|
|
|
table["images"].append([wandb.Image(image) for image in image_list]) |
|
|
|
|
|
df = pd.DataFrame(table) |
|
|
if self.wandb_log_unique_prompts: |
|
|
df = df.drop_duplicates(subset=["prompt"]) |
|
|
wandb.log({"completions": wandb.Table(dataframe=df)}) |
|
|
|
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
|
if self.args.hub_model_id is None: |
|
|
model_name = Path(self.args.output_dir).name |
|
|
else: |
|
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
|
self.create_model_card(model_name=model_name) |
|
|
super()._save_checkpoint(model, trial) |
|
|
class UnslothRLOOTrainer(_UnslothRLOOTrainer): |
|
|
""" |
|
|
|
|
|
Trainer for the Reinforce Leave One Out (RLOO) method. This algorithm was initially proposed in the paper [Back to |
|
|
Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in |
|
|
LLMs](https://huggingface.co/papers/2402.14740). |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
from trl import RLOOTrainer |
|
|
|
|
|
dataset = load_dataset("trl-lib/tldr", split="train") |
|
|
def reward_func(completions, **kwargs): |
|
|
# Dummy reward function that rewards completions with more unique letters. |
|
|
return [float(len(set(completion))) for completion in completions] |
|
|
trainer = RLOOTrainer( |
|
|
model="Qwen/Qwen2-0.5B-Instruct", |
|
|
reward_funcs=reward_func, |
|
|
train_dataset=dataset, |
|
|
) |
|
|
|
|
|
trainer.train() |
|
|
``` |
|
|
|
|
|
Args: |
|
|
model (`Union[str, PreTrainedModel]`): |
|
|
Model to be trained. Can be either: |
|
|
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
|
`args.model_init_kwargs`. |
|
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
|
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): |
|
|
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward |
|
|
functions with the prompts and completions and sum the rewards. Can be either: |
|
|
|
|
|
- A single reward function, such as: |
|
|
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the |
|
|
keyword arguments in `args.model_init_kwargs`. |
|
|
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. |
|
|
- A custom reward function: The function is provided with the prompts and the generated completions, |
|
|
plus any additional columns in the dataset. It should return a list of rewards. Custom reward |
|
|
functions can also return `None` when the reward is not applicable to those samples. This is useful |
|
|
for multi-task training where different reward functions apply to different types of samples. When a |
|
|
reward function returns `None` for a sample, that reward function is excluded from the reward |
|
|
calculation for that sample. For more details, see [Using a custom reward |
|
|
function](#using-a-custom-reward-function). |
|
|
|
|
|
The trainer's state is also passed to the reward function. The trainer's state is an instance of |
|
|
[`~transformers.TrainerState`] and can be accessed by accessing the `trainer_state` argument to the |
|
|
reward function's signature. |
|
|
- A list of reward functions, where each item can independently be any of the above types. Mixing different |
|
|
types within the list (e.g., a string model ID and a custom reward function) is allowed. |
|
|
args ([`RLOOConfig`], *optional*): |
|
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
|
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is |
|
|
ignored. The format of the samples can be either: |
|
|
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
|
and content). |
|
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.ProcessorMixin`], *optional*): |
|
|
Processing class used to process the data. The padding side must be set to "left". If `None`, the |
|
|
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A |
|
|
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token, |
|
|
`tokenizer.eos_token` will be used as the default. |
|
|
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*): |
|
|
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: |
|
|
|
|
|
- A single processing class: Used when `reward_funcs` contains only one reward function. |
|
|
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. |
|
|
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is |
|
|
`None`, the tokenizer for the model is automatically loaded using |
|
|
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward |
|
|
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes` |
|
|
are ignored. |
|
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*): |
|
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed |
|
|
in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
|
method. |
|
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): |
|
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your |
|
|
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. |
|
|
peft_config ([`~peft.PeftConfig`], *optional*): |
|
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
|
|
|
|
config: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `args` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
reward_model: |
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `reward_funcs` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
policy: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. Use `model` instead. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
ref_policy: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. To use the initial model as the |
|
|
reference model, simply omit this parameter. The parameter is ignored. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
data_collator: |
|
|
|
|
|
<Deprecated version="0.22.0"> |
|
|
|
|
|
This parameter is deprecated and will be removed in version 0.25.0. The RLOOTrainer does not use a data |
|
|
collator, so this parameter is ignored. |
|
|
|
|
|
</Deprecated> |
|
|
|
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
model = None, |
|
|
reward_funcs = None, |
|
|
args = None, |
|
|
train_dataset = None, |
|
|
eval_dataset = None, |
|
|
processing_class = None, |
|
|
reward_processing_classes = None, |
|
|
callbacks = None, |
|
|
peft_config = None, |
|
|
config = None, |
|
|
reward_model = None, |
|
|
policy = None, |
|
|
ref_policy = None, |
|
|
data_collator = None, |
|
|
**kwargs |
|
|
): |
|
|
if args is None: args = UnslothRLOOConfig() |
|
|
use_bf16 = getattr(args, 'bf16', False) |
|
|
if type(use_bf16) is not bool: use_bf16 = False |
|
|
use_fp16 = getattr(args, 'fp16', False) |
|
|
if type(use_fp16) is not bool: use_fp16 = False |
|
|
force_float32 = False |
|
|
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' |
|
|
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): |
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
|
force_float32 = True |
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
|
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) |
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
|
from unsloth_zoo.utils import _get_dtype |
|
|
dtype = _get_dtype(dtype) |
|
|
float16 = dtype == torch.float16 |
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
|
if force_float32: |
|
|
|
|
|
args.fp16 = False |
|
|
args.bf16 = False |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
|
|
|
|
args.fp16 = float16 |
|
|
args.bf16 = not float16 |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
|
args.eval_strategy = 'steps' |
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
|
if ga_steps is not None and ga_steps > 1: |
|
|
from transformers import __version__ as transformers_version |
|
|
if Version(transformers_version) <= Version('4.45.2'): |
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
|
if force_float32: |
|
|
args.bf16_full_eval = False |
|
|
args.fp16_full_eval = False |
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
|
args.bf16_full_eval = True |
|
|
args.fp16_full_eval = False |
|
|
elif not bf16_full_eval and not fp16_full_eval: |
|
|
args.bf16_full_eval = args.bf16 |
|
|
args.fp16_full_eval = args.fp16 |
|
|
_output_logits = False |
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
|
if _output_logits: |
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
|
pass |
|
|
else: |
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
|
max_seq_length = model.max_seq_length |
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
|
if model is not None and hasattr(model, 'for_training'): |
|
|
model.for_training() |
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
|
if 'processing_class' in locals(): |
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer.tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer.tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
other_metrics = [] |
|
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
|
PatchRLStatistics('rloo_trainer', other_metrics) |
|
|
|
|
|
|
|
|
|
|
|
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: |
|
|
if getattr(args, "_n_gpu", 1) != 1: |
|
|
args._n_gpu = 1 |
|
|
if "model" in locals() and hasattr(model, "for_training"): |
|
|
model.for_training() |
|
|
super().__init__( |
|
|
model = model, |
|
|
reward_funcs = reward_funcs, |
|
|
args = args, |
|
|
train_dataset = train_dataset, |
|
|
eval_dataset = eval_dataset, |
|
|
processing_class = processing_class, |
|
|
reward_processing_classes = reward_processing_classes, |
|
|
callbacks = callbacks, |
|
|
peft_config = peft_config, |
|
|
config = config, |
|
|
reward_model = reward_model, |
|
|
policy = policy, |
|
|
ref_policy = ref_policy, |
|
|
data_collator = data_collator,**kwargs) |
|
|
if "model" in locals() and hasattr(model, "for_inference"): |
|
|
model.for_inference() |
|
|
if hasattr(self, 'neftune_hook_handle'): |
|
|
self.neftune_hook_handle.remove() |
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
|
pass |
|
|
if hasattr(self, 'accelerator'): |
|
|
scaler = self.accelerator.scaler |
|
|
current_model = model |
|
|
while hasattr(current_model, 'model'): |
|
|
current_model.accelerator_scaler = scaler |
|
|
current_model = current_model.model |
|
|
current_model.accelerator_scaler = scaler |
|
|
pass |
|
|
if hasattr(self, 'train'): |
|
|
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) |
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if hasattr(logger, "addFilter"): |
|
|
import logging |
|
|
class HideLoggingMessage(logging.Filter): |
|
|
def __init__(self, text): self.text = text |
|
|
def filter(self, x): return not (self.text in x.getMessage()) |
|
|
pass |
|
|
logger.addFilter(HideLoggingMessage("`use_cache=True`")) |
|
|
|
|
|
|