|
|
""" |
|
|
2025.11.3 |
|
|
2025.11.2 |
|
|
4.57.1 |
|
|
0.24.0 |
|
|
__UNSLOTH_VERSIONING__ |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import Tensor |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
|
from trl.trainer.reward_trainer import (Any, AutoModelForSequenceClassification, AutoTokenizer, BaseTrainer, Callable, DataCollator, DataCollatorForPreference, Dataset, EvalPrediction, IterableDataset, Optional, PartialState, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RewardConfig, RewardTrainer, TrainerCallback, Union, clone_chat_template, contextlib, dataclass, defaultdict, disable_dropout_in_model, get_act_offloading_ctx_manager, is_conversational, logger, logging, nn, os, pad, prepare_peft_model, re, remove_none_values, suppress_from_pretrained_warning, torch, transformers, Optional, PreTrainedModel, logger, os, re, torch) |
|
|
|
|
|
|
|
|
import os |
|
|
from typing import * |
|
|
from dataclasses import dataclass, field |
|
|
from packaging.version import Version |
|
|
import torch |
|
|
import numpy as np |
|
|
from contextlib import nullcontext |
|
|
from torch.nn import functional as F |
|
|
import inspect |
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
from transformers.training_args import ParallelMode |
|
|
|
|
|
|
|
|
import functools |
|
|
from types import MethodType |
|
|
def prepare_for_training_mode(f): |
|
|
@functools.wraps(f) |
|
|
def wrapper(self, *args, **kwargs): |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_training"): |
|
|
self.model.for_training() |
|
|
output = f(self, *args, **kwargs) |
|
|
|
|
|
if hasattr(self, 'model') and hasattr(self.model, "for_inference"): |
|
|
self.model.for_inference() |
|
|
return output |
|
|
return wrapper |
|
|
pass |
|
|
|
|
|
torch_compile_options = { |
|
|
"epilogue_fusion" : True, |
|
|
"max_autotune" : False, |
|
|
"shape_padding" : True, |
|
|
"trace.enabled" : False, |
|
|
"triton.cudagraphs" : False, |
|
|
} |
|
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
|
def chunked_selective_log_softmax(logits, index): |
|
|
|
|
|
chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) |
|
|
chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) |
|
|
all_per_token_logps = [] |
|
|
|
|
|
for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): |
|
|
chunk_logits = chunk_logits.to(torch.float32) |
|
|
selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) |
|
|
logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) |
|
|
per_token_logps = selected_logits - logsumexp_values |
|
|
all_per_token_logps.append(per_token_logps) |
|
|
pass |
|
|
all_per_token_logps = torch.concat(all_per_token_logps) |
|
|
all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) |
|
|
return all_per_token_logps |
|
|
|
|
|
def calculate_pad_tokens_in_prompt( |
|
|
input_ids: torch.Tensor, |
|
|
logits_to_keep: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens |
|
|
""" |
|
|
if logits_to_keep >= input_ids.shape[1]: |
|
|
raise ValueError("logits_to_keep must be smaller than the sequence length.") |
|
|
|
|
|
prompt_section = input_ids[:, :-logits_to_keep] |
|
|
|
|
|
padding_mask = (prompt_section == pad_token_id) |
|
|
|
|
|
pad_token_counts = padding_mask.sum(dim=1) |
|
|
|
|
|
return pad_token_counts |
|
|
|
|
|
def create_completion_attention_mask( |
|
|
completion_input_ids: torch.Tensor, |
|
|
left_pad_tokens_per_prompt: torch.Tensor, |
|
|
max_left_pad: int, |
|
|
pad_token_id: int |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] |
|
|
|
|
|
Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens |
|
|
and pad are pad tokens, this function would make a completion mask that would 0 out the pad |
|
|
and p tokens. so in this example [0,0,0,1,1,1,0,0,0] |
|
|
""" |
|
|
batch_size, completion_len = completion_input_ids.shape |
|
|
device = completion_input_ids.device |
|
|
|
|
|
num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt |
|
|
|
|
|
indices = torch.arange(completion_len, device=device).unsqueeze(0) |
|
|
shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) |
|
|
|
|
|
non_padding_mask = (completion_input_ids != pad_token_id) |
|
|
|
|
|
final_mask = shift_mask & non_padding_mask |
|
|
|
|
|
return final_mask |
|
|
|
|
|
def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: |
|
|
""" |
|
|
Moves all padding tokens in each sequence of a batch to the right. |
|
|
""" |
|
|
mask = (tensor != pad_id) |
|
|
|
|
|
sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) |
|
|
packed_tensor = torch.gather(tensor, 1, sorted_indices) |
|
|
return packed_tensor |
|
|
|
|
|
def align_logprobs_with_mask( |
|
|
logprob_tensor: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
pad_value: float = 0.0 |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Aligns a log probability tensor with a given attention mask. |
|
|
""" |
|
|
|
|
|
device = logprob_tensor.device |
|
|
batch_size, logprob_seq_len = logprob_tensor.shape |
|
|
mask_seq_len = attention_mask.shape[1] |
|
|
|
|
|
padded_logprobs = torch.full( |
|
|
attention_mask.shape, |
|
|
fill_value=pad_value, |
|
|
dtype=logprob_tensor.dtype, |
|
|
device=device |
|
|
) |
|
|
|
|
|
left_pad_counts = torch.argmax(attention_mask, dim=1) |
|
|
|
|
|
cols = torch.arange(logprob_seq_len, device=device) |
|
|
dest_indices = left_pad_counts.unsqueeze(1) + cols |
|
|
|
|
|
|
|
|
|
|
|
row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_mask = dest_indices < mask_seq_len |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_rows = row_indices[valid_mask] |
|
|
valid_cols = dest_indices[valid_mask] |
|
|
valid_vals = logprob_tensor[valid_mask] |
|
|
|
|
|
|
|
|
|
|
|
padded_logprobs[valid_rows, valid_cols] = valid_vals |
|
|
|
|
|
return padded_logprobs |
|
|
@dataclass |
|
|
class UnslothRewardConfig(RewardConfig): |
|
|
""" |
|
|
|
|
|
Configuration class for the [`RewardTrainer`]. |
|
|
|
|
|
This class includes only the parameters that are specific to Reward training. For a full list of training |
|
|
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this |
|
|
class may differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
|
command line. |
|
|
|
|
|
Parameters: |
|
|
> Parameters that control the model |
|
|
|
|
|
model_init_kwargs (`dict[str, Any]`, *optional*): |
|
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
|
argument of the [`RewardTrainer`] is provided as a string. If you're training a MoE architecture and want |
|
|
to include the load balancing/auxilliary loss as a part of the final loss, remember to set |
|
|
`output_router_logits=True` in this dictionary. |
|
|
chat_template_path (`str`, *optional*): |
|
|
If specified, sets the model's chat template. This can either be the path to a tokenizer (local directory |
|
|
or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, you must |
|
|
ensure that any special tokens referenced in the template are added to the tokenizer and that the model's |
|
|
embedding layer is resized accordingly. |
|
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
|
Whether to disable dropout in the model. |
|
|
|
|
|
> Parameters that control the data preprocessing |
|
|
|
|
|
dataset_num_proc (`int`, *optional*): |
|
|
Number of processes to use for processing the dataset. |
|
|
eos_token (`str`, *optional*): |
|
|
Token used to indicate the end of a turn or sequence. If `None`, it defaults to |
|
|
`processing_class.eos_token`. |
|
|
pad_token (`str`, *optional*): |
|
|
Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`, |
|
|
it falls back to `processing_class.eos_token`. |
|
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
|
Maximum length of the tokenized sequence. Samples are filtered out if either chosen or rejected sequence |
|
|
exceeds this value. If `None`, no filtering is applied. |
|
|
pad_to_multiple_of (`int`, *optional*): |
|
|
If set, the sequences will be padded to a multiple of this value. |
|
|
|
|
|
> Parameters that control the training |
|
|
|
|
|
center_rewards_coefficient (`float`, *optional*): |
|
|
Coefficient to incentivize the reward model to output mean-zero rewards (proposed by |
|
|
https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`. |
|
|
activation_offloading (`bool`, *optional*, defaults to `False`): |
|
|
Whether to offload the activations to the CPU. |
|
|
|
|
|
""" |
|
|
vllm_sampling_params: Optional[Any] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
|
) |
|
|
unsloth_num_chunks : Optional[int] = field( |
|
|
default = -1, |
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
|
) |
|
|
max_seq_length : Optional[int] = field( |
|
|
default = None, |
|
|
metadata = {'help': 'Maximum sequence length to truncate to.'}, |
|
|
) |
|
|
def __init__( |
|
|
self, |
|
|
output_dir = None, |
|
|
overwrite_output_dir = None, |
|
|
do_train = False, |
|
|
do_eval = False, |
|
|
do_predict = False, |
|
|
eval_strategy = 'no', |
|
|
prediction_loss_only = False, |
|
|
per_device_train_batch_size = 4, |
|
|
per_device_eval_batch_size = 4, |
|
|
per_gpu_train_batch_size = None, |
|
|
per_gpu_eval_batch_size = None, |
|
|
gradient_accumulation_steps = 2, |
|
|
eval_accumulation_steps = 2, |
|
|
eval_delay = 0, |
|
|
torch_empty_cache_steps = 250, |
|
|
learning_rate = 5e-05, |
|
|
weight_decay = 0.01, |
|
|
adam_beta1 = 0.9, |
|
|
adam_beta2 = 0.999, |
|
|
adam_epsilon = 1e-08, |
|
|
max_grad_norm = 1.0, |
|
|
num_train_epochs = 3.0, |
|
|
max_steps = -1, |
|
|
lr_scheduler_type = 'linear', |
|
|
warmup_ratio = 0.1, |
|
|
warmup_steps = 0, |
|
|
log_level = 'passive', |
|
|
log_level_replica = 'warning', |
|
|
log_on_each_node = True, |
|
|
logging_dir = None, |
|
|
logging_strategy = 'steps', |
|
|
logging_first_step = False, |
|
|
logging_steps = 1, |
|
|
logging_nan_inf_filter = False, |
|
|
save_strategy = 'steps', |
|
|
save_steps = 500, |
|
|
save_total_limit = None, |
|
|
save_safetensors = True, |
|
|
save_on_each_node = False, |
|
|
save_only_model = False, |
|
|
restore_callback_states_from_checkpoint = False, |
|
|
no_cuda = False, |
|
|
use_cpu = False, |
|
|
use_mps_device = False, |
|
|
seed = 3407, |
|
|
data_seed = 3407, |
|
|
jit_mode_eval = False, |
|
|
bf16 = False, |
|
|
fp16 = False, |
|
|
fp16_opt_level = 'O1', |
|
|
half_precision_backend = 'auto', |
|
|
bf16_full_eval = False, |
|
|
fp16_full_eval = False, |
|
|
tf32 = None, |
|
|
local_rank = -1, |
|
|
ddp_backend = None, |
|
|
tpu_num_cores = None, |
|
|
tpu_metrics_debug = False, |
|
|
debug = '', |
|
|
dataloader_drop_last = False, |
|
|
eval_steps = None, |
|
|
dataloader_num_workers = 0, |
|
|
dataloader_prefetch_factor = None, |
|
|
past_index = -1, |
|
|
run_name = None, |
|
|
disable_tqdm = None, |
|
|
remove_unused_columns = True, |
|
|
label_names = None, |
|
|
load_best_model_at_end = False, |
|
|
metric_for_best_model = None, |
|
|
greater_is_better = None, |
|
|
ignore_data_skip = False, |
|
|
fsdp = None, |
|
|
fsdp_min_num_params = 0, |
|
|
fsdp_config = None, |
|
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
|
accelerator_config = None, |
|
|
parallelism_config = None, |
|
|
deepspeed = None, |
|
|
label_smoothing_factor = 0.0, |
|
|
optim = 'adamw_8bit', |
|
|
optim_args = None, |
|
|
adafactor = False, |
|
|
group_by_length = False, |
|
|
length_column_name = 'length', |
|
|
report_to = None, |
|
|
project = 'huggingface', |
|
|
trackio_space_id = 'trackio', |
|
|
ddp_find_unused_parameters = None, |
|
|
ddp_bucket_cap_mb = None, |
|
|
ddp_broadcast_buffers = None, |
|
|
dataloader_pin_memory = True, |
|
|
dataloader_persistent_workers = False, |
|
|
skip_memory_metrics = True, |
|
|
use_legacy_prediction_loop = False, |
|
|
push_to_hub = False, |
|
|
resume_from_checkpoint = None, |
|
|
hub_model_id = None, |
|
|
hub_strategy = 'every_save', |
|
|
hub_token = None, |
|
|
hub_private_repo = None, |
|
|
hub_always_push = False, |
|
|
hub_revision = None, |
|
|
gradient_checkpointing = True, |
|
|
gradient_checkpointing_kwargs = None, |
|
|
include_inputs_for_metrics = False, |
|
|
eval_do_concat_batches = True, |
|
|
fp16_backend = 'auto', |
|
|
push_to_hub_model_id = None, |
|
|
push_to_hub_organization = None, |
|
|
push_to_hub_token = None, |
|
|
mp_parameters = '', |
|
|
auto_find_batch_size = False, |
|
|
full_determinism = False, |
|
|
torchdynamo = None, |
|
|
ray_scope = 'last', |
|
|
ddp_timeout = 1800, |
|
|
torch_compile = False, |
|
|
torch_compile_backend = None, |
|
|
torch_compile_mode = None, |
|
|
include_tokens_per_second = False, |
|
|
include_num_input_tokens_seen = False, |
|
|
neftune_noise_alpha = None, |
|
|
optim_target_modules = None, |
|
|
batch_eval_metrics = False, |
|
|
eval_on_start = False, |
|
|
use_liger_kernel = False, |
|
|
liger_kernel_config = None, |
|
|
eval_use_gather_object = False, |
|
|
average_tokens_across_devices = True, |
|
|
model_init_kwargs = None, |
|
|
chat_template_path = None, |
|
|
disable_dropout = True, |
|
|
dataset_num_proc = None, |
|
|
eos_token = None, |
|
|
pad_token = None, |
|
|
max_length = 1024, |
|
|
pad_to_multiple_of = None, |
|
|
center_rewards_coefficient = None, |
|
|
activation_offloading = False, |
|
|
vllm_sampling_params = None, |
|
|
unsloth_num_chunks = -1, |
|
|
max_seq_length = None, |
|
|
**kwargs, |
|
|
): |
|
|
if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
|
if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
|
output_dir = 'unsloth_training_checkpoints' |
|
|
save_strategy = 'no' |
|
|
if dataset_num_proc is None: |
|
|
from multiprocessing import cpu_count |
|
|
dataset_num_proc = min(max(cpu_count()+4, 2), 64) |
|
|
if os.environ.get('UNSLOTH_ENABLE_FLEX_ATTENTION', '0') == '1': |
|
|
from unsloth_zoo.flex_attention import HAS_FLEX_ATTENTION |
|
|
if HAS_FLEX_ATTENTION and pad_to_multiple_of is None: |
|
|
from unsloth_zoo.flex_attention import FLEX_ATTENTION_BLOCK_SIZE |
|
|
pad_to_multiple_of = FLEX_ATTENTION_BLOCK_SIZE |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
output_dir = output_dir, |
|
|
overwrite_output_dir = overwrite_output_dir, |
|
|
do_train = do_train, |
|
|
do_eval = do_eval, |
|
|
do_predict = do_predict, |
|
|
eval_strategy = eval_strategy, |
|
|
prediction_loss_only = prediction_loss_only, |
|
|
per_device_train_batch_size = per_device_train_batch_size, |
|
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
|
eval_accumulation_steps = eval_accumulation_steps, |
|
|
eval_delay = eval_delay, |
|
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
|
learning_rate = learning_rate, |
|
|
weight_decay = weight_decay, |
|
|
adam_beta1 = adam_beta1, |
|
|
adam_beta2 = adam_beta2, |
|
|
adam_epsilon = adam_epsilon, |
|
|
max_grad_norm = max_grad_norm, |
|
|
num_train_epochs = num_train_epochs, |
|
|
max_steps = max_steps, |
|
|
lr_scheduler_type = lr_scheduler_type, |
|
|
warmup_ratio = warmup_ratio, |
|
|
warmup_steps = warmup_steps, |
|
|
log_level = log_level, |
|
|
log_level_replica = log_level_replica, |
|
|
log_on_each_node = log_on_each_node, |
|
|
logging_dir = logging_dir, |
|
|
logging_strategy = logging_strategy, |
|
|
logging_first_step = logging_first_step, |
|
|
logging_steps = logging_steps, |
|
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
|
save_strategy = save_strategy, |
|
|
save_steps = save_steps, |
|
|
save_total_limit = save_total_limit, |
|
|
save_safetensors = save_safetensors, |
|
|
save_on_each_node = save_on_each_node, |
|
|
save_only_model = save_only_model, |
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
|
no_cuda = no_cuda, |
|
|
use_cpu = use_cpu, |
|
|
use_mps_device = use_mps_device, |
|
|
seed = seed, |
|
|
data_seed = data_seed, |
|
|
jit_mode_eval = jit_mode_eval, |
|
|
bf16 = bf16, |
|
|
fp16 = fp16, |
|
|
fp16_opt_level = fp16_opt_level, |
|
|
half_precision_backend = half_precision_backend, |
|
|
bf16_full_eval = bf16_full_eval, |
|
|
fp16_full_eval = fp16_full_eval, |
|
|
tf32 = tf32, |
|
|
local_rank = local_rank, |
|
|
ddp_backend = ddp_backend, |
|
|
tpu_num_cores = tpu_num_cores, |
|
|
tpu_metrics_debug = tpu_metrics_debug, |
|
|
debug = debug, |
|
|
dataloader_drop_last = dataloader_drop_last, |
|
|
eval_steps = eval_steps, |
|
|
dataloader_num_workers = dataloader_num_workers, |
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
|
past_index = past_index, |
|
|
run_name = run_name, |
|
|
disable_tqdm = disable_tqdm, |
|
|
remove_unused_columns = remove_unused_columns, |
|
|
label_names = label_names, |
|
|
load_best_model_at_end = load_best_model_at_end, |
|
|
metric_for_best_model = metric_for_best_model, |
|
|
greater_is_better = greater_is_better, |
|
|
ignore_data_skip = ignore_data_skip, |
|
|
fsdp = fsdp, |
|
|
fsdp_min_num_params = fsdp_min_num_params, |
|
|
fsdp_config = fsdp_config, |
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
|
accelerator_config = accelerator_config, |
|
|
parallelism_config = parallelism_config, |
|
|
deepspeed = deepspeed, |
|
|
label_smoothing_factor = label_smoothing_factor, |
|
|
optim = optim, |
|
|
optim_args = optim_args, |
|
|
adafactor = adafactor, |
|
|
group_by_length = group_by_length, |
|
|
length_column_name = length_column_name, |
|
|
report_to = report_to, |
|
|
project = project, |
|
|
trackio_space_id = trackio_space_id, |
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
|
dataloader_pin_memory = dataloader_pin_memory, |
|
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
|
skip_memory_metrics = skip_memory_metrics, |
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
|
push_to_hub = push_to_hub, |
|
|
resume_from_checkpoint = resume_from_checkpoint, |
|
|
hub_model_id = hub_model_id, |
|
|
hub_strategy = hub_strategy, |
|
|
hub_token = hub_token, |
|
|
hub_private_repo = hub_private_repo, |
|
|
hub_always_push = hub_always_push, |
|
|
hub_revision = hub_revision, |
|
|
gradient_checkpointing = gradient_checkpointing, |
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
|
eval_do_concat_batches = eval_do_concat_batches, |
|
|
fp16_backend = fp16_backend, |
|
|
push_to_hub_model_id = push_to_hub_model_id, |
|
|
push_to_hub_organization = push_to_hub_organization, |
|
|
push_to_hub_token = push_to_hub_token, |
|
|
mp_parameters = mp_parameters, |
|
|
auto_find_batch_size = auto_find_batch_size, |
|
|
full_determinism = full_determinism, |
|
|
torchdynamo = torchdynamo, |
|
|
ray_scope = ray_scope, |
|
|
ddp_timeout = ddp_timeout, |
|
|
torch_compile = torch_compile, |
|
|
torch_compile_backend = torch_compile_backend, |
|
|
torch_compile_mode = torch_compile_mode, |
|
|
include_tokens_per_second = include_tokens_per_second, |
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
|
neftune_noise_alpha = neftune_noise_alpha, |
|
|
optim_target_modules = optim_target_modules, |
|
|
batch_eval_metrics = batch_eval_metrics, |
|
|
eval_on_start = eval_on_start, |
|
|
use_liger_kernel = use_liger_kernel, |
|
|
liger_kernel_config = liger_kernel_config, |
|
|
eval_use_gather_object = eval_use_gather_object, |
|
|
average_tokens_across_devices = average_tokens_across_devices, |
|
|
model_init_kwargs = model_init_kwargs, |
|
|
chat_template_path = chat_template_path, |
|
|
disable_dropout = disable_dropout, |
|
|
dataset_num_proc = dataset_num_proc, |
|
|
eos_token = eos_token, |
|
|
pad_token = pad_token, |
|
|
max_length = max_length, |
|
|
pad_to_multiple_of = pad_to_multiple_of, |
|
|
center_rewards_coefficient = center_rewards_coefficient, |
|
|
activation_offloading = activation_offloading,**kwargs) |
|
|
self.vllm_sampling_params = vllm_sampling_params |
|
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
|
self.max_seq_length = max_seq_length |
|
|
pass |
|
|
|
|
|
class _UnslothRewardTrainer(BaseTrainer): |
|
|
"""""" |
|
|
|
|
|
_tag_names = ["trl", "reward-trainer"] |
|
|
_name = "Reward" |
|
|
_template_file = "rm_model_card.md" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model: Union[str, PreTrainedModel], |
|
|
args: Optional[RewardConfig] = None, |
|
|
data_collator: Optional[DataCollator] = None, |
|
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
|
processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
|
optimizer_cls_and_kwargs: Optional[tuple[type[torch.optim.Optimizer], dict[str, Any]]] = None, |
|
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
|
peft_config: Optional["PeftConfig"] = None, |
|
|
): |
|
|
|
|
|
if args is None: |
|
|
model_name = model if isinstance(model, str) else model.config._name_or_path |
|
|
model_name = model_name.split("/")[-1] |
|
|
args = RewardConfig(f"{model_name}-Reward") |
|
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
if isinstance(model, str): |
|
|
model_id = model |
|
|
dtype = model_init_kwargs.get("dtype") |
|
|
if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None: |
|
|
pass |
|
|
elif isinstance(dtype, str) and dtype in ["bfloat16", "float16", "float32"]: |
|
|
model_init_kwargs["dtype"] = getattr(torch, dtype) |
|
|
else: |
|
|
raise ValueError( |
|
|
"Invalid `dtype` passed to `RewardConfig`. Expected either 'auto' or a string representing " |
|
|
f"a valid `torch.dtype` (e.g., 'float32'), but got {dtype}." |
|
|
) |
|
|
with suppress_from_pretrained_warning(transformers.modeling_utils.logger): |
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=1, **model_init_kwargs) |
|
|
else: |
|
|
model_id = model.config._name_or_path |
|
|
if args.model_init_kwargs is not None: |
|
|
logger.warning( |
|
|
"You passed `model_init_kwargs` to the `RewardConfig`, but your model is already instantiated. " |
|
|
"The `model_init_kwargs` will be ignored." |
|
|
) |
|
|
|
|
|
|
|
|
if processing_class is None: |
|
|
processing_class = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
|
|
|
if args.eos_token is not None: |
|
|
eos_token = args.eos_token |
|
|
eos_token_id = processing_class.convert_tokens_to_ids(eos_token) |
|
|
if eos_token_id is None: |
|
|
raise ValueError( |
|
|
f"The specified `eos_token` ('{eos_token}') is not found in the vocabulary of the given " |
|
|
f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `eos_token` exists " |
|
|
"in the vocabulary before using it as an EOS token." |
|
|
) |
|
|
processing_class.eos_token_id = eos_token_id |
|
|
|
|
|
if args.chat_template_path is not None: |
|
|
if os.path.isfile(args.chat_template_path) and args.chat_template_path.endswith((".jinja", ".j2")): |
|
|
with open(args.chat_template_path, encoding="utf-8") as chat_template_file: |
|
|
processing_class.chat_template = chat_template_file.read() |
|
|
added_tokens = [] |
|
|
else: |
|
|
model, processing_class, added_tokens = clone_chat_template( |
|
|
model, processing_class, args.chat_template_path |
|
|
) |
|
|
else: |
|
|
added_tokens = [] |
|
|
|
|
|
|
|
|
if False: |
|
|
if added_tokens: |
|
|
|
|
|
if peft_config.trainable_token_indices is None: |
|
|
peft_config.trainable_token_indices = {"embed_tokens": added_tokens} |
|
|
elif "embed_tokens" not in peft_config.trainable_token_indices: |
|
|
peft_config.trainable_token_indices["embed_tokens"] = added_tokens |
|
|
else: |
|
|
peft_config.trainable_token_indices["embed_tokens"].extend(added_tokens) |
|
|
|
|
|
|
|
|
if peft_config.modules_to_save is None or "lm_head" not in peft_config.modules_to_save: |
|
|
logger.warning( |
|
|
"Cloning chat template added new tokens to the tokenizer, but 'lm_head' is not in PEFT's " |
|
|
"`modules_to_save`. As a result, the model may not learn to generate outputs with these new " |
|
|
"tokens, leading to degraded generation quality. To fix this, add " |
|
|
"`modules_to_save=['lm_head']` to your PEFT configuration." |
|
|
) |
|
|
|
|
|
if peft_config.modules_to_save is None: |
|
|
peft_config.modules_to_save = ["lm_head"] |
|
|
else: |
|
|
peft_config.modules_to_save.append("lm_head") |
|
|
|
|
|
if False: |
|
|
model = prepare_peft_model(model, peft_config, args) |
|
|
|
|
|
|
|
|
if args.disable_dropout: |
|
|
disable_dropout_in_model(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pad_token = args.pad_token or processing_class.pad_token or processing_class.eos_token |
|
|
pad_token_id = processing_class.convert_tokens_to_ids(pad_token) |
|
|
if pad_token_id is None: |
|
|
raise ValueError( |
|
|
f"The specified `pad_token` ('{pad_token}') is not found in the vocabulary of the given " |
|
|
f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `pad_token` exists " |
|
|
"in the vocabulary before using it as a padding token." |
|
|
) |
|
|
model.config.pad_token_id = pad_token_id |
|
|
processing_class.pad_token_id = pad_token_id |
|
|
|
|
|
|
|
|
if data_collator is None: |
|
|
data_collator = DataCollatorForPreference( |
|
|
pad_token_id=pad_token_id, |
|
|
pad_to_multiple_of=args.pad_to_multiple_of, |
|
|
) |
|
|
|
|
|
|
|
|
train_dataset = self._prepare_dataset(train_dataset, processing_class, args, "train") |
|
|
if eval_dataset is not None: |
|
|
if isinstance(eval_dataset, dict): |
|
|
eval_dataset = { |
|
|
key: self._prepare_dataset(dataset, processing_class, args, key) |
|
|
for key, dataset in eval_dataset.items() |
|
|
} |
|
|
else: |
|
|
eval_dataset = self._prepare_dataset(eval_dataset, processing_class, args, "eval") |
|
|
|
|
|
|
|
|
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} |
|
|
self._total_train_tokens = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super().__init__( |
|
|
model=model, |
|
|
args=args, |
|
|
data_collator=data_collator, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
processing_class=processing_class, |
|
|
compute_metrics=compute_metrics, |
|
|
callbacks=callbacks, |
|
|
optimizers=optimizers, |
|
|
optimizer_cls_and_kwargs=optimizer_cls_and_kwargs, |
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
|
) |
|
|
|
|
|
|
|
|
self.can_return_loss = True |
|
|
self.label_names = [] |
|
|
|
|
|
|
|
|
if self.args.activation_offloading: |
|
|
self.maybe_activation_offload_context = get_act_offloading_ctx_manager(model=self.model) |
|
|
else: |
|
|
self.maybe_activation_offload_context = contextlib.nullcontext() |
|
|
|
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
|
|
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) |
|
|
|
|
|
def _prepare_dataset( |
|
|
self, |
|
|
dataset: Union[Dataset, IterableDataset], |
|
|
processing_class: PreTrainedTokenizerBase, |
|
|
args: RewardConfig, |
|
|
dataset_name: str, |
|
|
) -> Union[Dataset, IterableDataset]: |
|
|
|
|
|
|
|
|
if isinstance(dataset, Dataset): |
|
|
dataset = dataset.with_transform(remove_none_values) |
|
|
|
|
|
|
|
|
column_names = list(next(iter(dataset)).keys()) |
|
|
is_processed = "chosen_input_ids" in column_names and "rejected_input_ids" in column_names |
|
|
|
|
|
|
|
|
map_kwargs = {} |
|
|
if isinstance(dataset, Dataset): |
|
|
map_kwargs["num_proc"] = args.dataset_num_proc |
|
|
|
|
|
with PartialState().main_process_first(): |
|
|
if not is_processed: |
|
|
|
|
|
first_example = next(iter(dataset)) |
|
|
if not is_conversational(first_example): |
|
|
if isinstance(dataset, Dataset): |
|
|
map_kwargs["desc"] = f"Adding EOS to {dataset_name} dataset" |
|
|
|
|
|
def add_eos(example, eos_token): |
|
|
if not example["chosen"].endswith(eos_token): |
|
|
example["chosen"] = example["chosen"] + eos_token |
|
|
if "rejected" in example and not example["rejected"].endswith(eos_token): |
|
|
example["rejected"] = example["rejected"] + eos_token |
|
|
return example |
|
|
|
|
|
dataset = dataset.map( |
|
|
add_eos, |
|
|
fn_kwargs={"eos_token": processing_class.eos_token}, |
|
|
**map_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if isinstance(dataset, Dataset): |
|
|
map_kwargs["desc"] = f"Tokenizing {dataset_name} dataset" |
|
|
|
|
|
def tokenize_fn(example, processing_class): |
|
|
if "prompt" in example: |
|
|
example["chosen"] = example["prompt"] + example["chosen"] |
|
|
example["rejected"] = example["prompt"] + example["rejected"] |
|
|
|
|
|
if is_conversational(example): |
|
|
chosen_input_ids = processing_class.apply_chat_template( |
|
|
example["chosen"], |
|
|
tools=example.get("tools"), |
|
|
**example.get("chat_template_kwargs", {}), |
|
|
) |
|
|
rejected_input_ids = processing_class.apply_chat_template( |
|
|
example["rejected"], |
|
|
tools=example.get("tools"), |
|
|
**example.get("chat_template_kwargs", {}), |
|
|
) |
|
|
output = {"chosen_input_ids": chosen_input_ids, "rejected_input_ids": rejected_input_ids} |
|
|
else: |
|
|
output = { |
|
|
"chosen_input_ids": processing_class(text=example["chosen"])["input_ids"], |
|
|
"rejected_input_ids": processing_class(text=example["rejected"])["input_ids"], |
|
|
} |
|
|
return output |
|
|
|
|
|
dataset = dataset.map(tokenize_fn, fn_kwargs={"processing_class": processing_class}, **map_kwargs) |
|
|
|
|
|
|
|
|
if args.max_length is not None: |
|
|
if isinstance(dataset, Dataset): |
|
|
map_kwargs["desc"] = f"Filtering {dataset_name} >{args.max_length} tokens" |
|
|
dataset = dataset.filter( |
|
|
lambda example: len(example["chosen_input_ids"]) <= args.max_length |
|
|
and len(example["rejected_input_ids"]) <= args.max_length, |
|
|
**map_kwargs, |
|
|
) |
|
|
|
|
|
return dataset |
|
|
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
|
self._signature_columns = ["chosen_input_ids", "rejected_input_ids", "margin"] |
|
|
|
|
|
def compute_loss( |
|
|
self, |
|
|
model: nn.Module, |
|
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
|
return_outputs: bool = False, |
|
|
num_items_in_batch: Optional[torch.Tensor] = None, |
|
|
): |
|
|
""" |
|
|
Compute training loss and additionally compute token accuracies |
|
|
""" |
|
|
mode = "train" if self.model.training else "eval" |
|
|
|
|
|
|
|
|
inputs["use_cache"] = False |
|
|
outputs = model(**inputs) |
|
|
|
|
|
|
|
|
rewards_chosen, rewards_rejected = torch.chunk(outputs.logits.squeeze(-1), chunks=2) |
|
|
|
|
|
|
|
|
if "margin" in inputs: |
|
|
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean() |
|
|
else: |
|
|
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean() |
|
|
|
|
|
if self.args.center_rewards_coefficient is not None: |
|
|
loss += self.args.center_rewards_coefficient * torch.mean((rewards_chosen + rewards_rejected) ** 2) |
|
|
|
|
|
if mode == "train": |
|
|
num_tokens_in_batch = self.accelerator.gather_for_metrics(inputs["attention_mask"].sum()).sum().item() |
|
|
self._total_train_tokens += num_tokens_in_batch |
|
|
self._metrics[mode]["num_tokens"] = [self._total_train_tokens] |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
all_rewards = self.accelerator.gather(outputs.logits) |
|
|
self._metrics[mode]["min_reward"].append(all_rewards.min().item()) |
|
|
self._metrics[mode]["mean_reward"].append(all_rewards.mean().item()) |
|
|
self._metrics[mode]["max_reward"].append(all_rewards.max().item()) |
|
|
|
|
|
mean_accuracy = (rewards_chosen > rewards_rejected).float().mean() |
|
|
mean_accuracy = self.accelerator.gather_for_metrics(mean_accuracy).mean().item() |
|
|
self._metrics[mode]["accuracy"].append(mean_accuracy) |
|
|
|
|
|
mean_margin = (rewards_chosen - rewards_rejected).mean() |
|
|
mean_margin = self.accelerator.gather_for_metrics(mean_margin).mean() |
|
|
self._metrics[mode]["margin"].append(mean_margin.item()) |
|
|
|
|
|
return (loss, outputs) if return_outputs else loss |
|
|
|
|
|
|
|
|
def training_step(self, *args, **kwargs): |
|
|
with self.maybe_activation_offload_context: |
|
|
return super().training_step(*args, **kwargs) |
|
|
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
|
mode = "train" if self.model.training else "eval" |
|
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} |
|
|
|
|
|
|
|
|
|
|
|
if mode == "eval": |
|
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
|
|
logs.update(metrics) |
|
|
super().log(logs, start_time) |
|
|
self._metrics[mode].clear() |
|
|
|
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
|
if self.args.hub_model_id is None: |
|
|
model_name = Path(self.args.output_dir).name |
|
|
else: |
|
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
|
self.create_model_card(model_name=model_name) |
|
|
super()._save_checkpoint(model, trial) |
|
|
class UnslothRewardTrainer(_UnslothRewardTrainer): |
|
|
""" |
|
|
|
|
|
Trainer for Outcome-supervised Reward Models (ORM). |
|
|
|
|
|
This class is a wrapper around the [`~transformers.Trainer`] class and inherits all of its attributes and methods. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
from trl import RewardTrainer |
|
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") |
|
|
|
|
|
trainer = RewardTrainer(model="Qwen/Qwen2.5-0.5B-Instruct", train_dataset=dataset) |
|
|
trainer.train() |
|
|
``` |
|
|
|
|
|
Args: |
|
|
model (`Union[str, PreTrainedModel]`): |
|
|
Model to be trained. Can be either: |
|
|
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
|
path to a *directory* containing model weights saved using |
|
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
|
using `AutoModelForSequenceClassification.from_pretrained` with the keyword arguments in |
|
|
`args.model_init_kwargs`. |
|
|
- A sequence classification [`~transformers.PreTrainedModel`] object. |
|
|
args ([`RewardConfig`], *optional*): |
|
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
|
data_collator ([`~transformers.DataCollator`], *optional*): |
|
|
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`. |
|
|
Will default to [`~trainer.reward_trainer.DataCollatorForPreference`]. |
|
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
|
Dataset to use for training. This trainer supports [preference](#preference) type (both implicit and |
|
|
explicit prompt). The format of the samples can be either: |
|
|
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
|
and content). |
|
|
|
|
|
The trainer also supports processed datasets (tokenized) as long as they contain an `chosen_input_ids` and |
|
|
`rejected_input_ids` fields. |
|
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*): |
|
|
Tokenizer used to process the data. If `None`, the tokenizer is loaded from the model's name with |
|
|
[`~transformers.AutoTokenizer.from_pretrained`]. A padding token, `processing_class.pad_token`, must be |
|
|
set. If the processing class has not set a padding token, `processing_class.eos_token` will be used as the |
|
|
default. |
|
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
|
The function that will be used to compute metrics at evaluation. Must take a |
|
|
[`~transformers.EvalPrediction`] and return a dictionary string to metric values. When passing |
|
|
[`RewardConfig`] with `batch_eval_metrics` set to `True`, your `compute_metrics` function must take a |
|
|
boolean `compute_result` argument. This will be triggered after the last eval batch to signal that the |
|
|
function needs to calculate and return the global summary statistics rather than accumulating the |
|
|
batch-level statistics. |
|
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*): |
|
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed |
|
|
in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
|
method. |
|
|
optimizers (`tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]]`, *optional*, defaults to `(None, None)`): |
|
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of `AdamW` on your |
|
|
model and a scheduler given by [`~transformers.get_linear_schedule_with_warmup`] controlled by `args`. |
|
|
optimizer_cls_and_kwargs (`tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*): |
|
|
A tuple containing the optimizer class and keyword arguments to use. Overrides `optim` and `optim_args` in |
|
|
`args`. Incompatible with the `optimizers` argument. |
|
|
|
|
|
Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before |
|
|
initializing the Trainer. |
|
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*): |
|
|
A function that preprocess the logits right before caching them at each evaluation step. Must take two |
|
|
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made |
|
|
by this function will be reflected in the predictions received by `compute_metrics`. |
|
|
|
|
|
Note that the labels (second parameter) will be `None` if the dataset does not have them. |
|
|
peft_config ([`~peft.PeftConfig`], *optional*): |
|
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. Note that if the loaded |
|
|
model is a causal LM, it's highly recommended to set `modules_to_save=["score"]` in the PEFT configuration |
|
|
to ensure that the reward head is properly trained. |
|
|
|
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
model, |
|
|
args = None, |
|
|
data_collator = None, |
|
|
train_dataset = None, |
|
|
eval_dataset = None, |
|
|
processing_class = None, |
|
|
compute_metrics = None, |
|
|
callbacks = None, |
|
|
optimizer_cls_and_kwargs = None, |
|
|
preprocess_logits_for_metrics = None, |
|
|
peft_config = None, |
|
|
**kwargs |
|
|
): |
|
|
if args is None: args = UnslothRewardConfig() |
|
|
use_bf16 = getattr(args, 'bf16', False) |
|
|
if type(use_bf16) is not bool: use_bf16 = False |
|
|
use_fp16 = getattr(args, 'fp16', False) |
|
|
if type(use_fp16) is not bool: use_fp16 = False |
|
|
force_float32 = False |
|
|
full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' |
|
|
if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): |
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
|
force_float32 = True |
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
|
dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) |
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
|
from unsloth_zoo.utils import _get_dtype |
|
|
dtype = _get_dtype(dtype) |
|
|
float16 = dtype == torch.float16 |
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
|
if force_float32: |
|
|
|
|
|
args.fp16 = False |
|
|
args.bf16 = False |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
|
|
|
|
args.fp16 = float16 |
|
|
args.bf16 = not float16 |
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
|
args.eval_strategy = 'steps' |
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
|
if ga_steps is not None and ga_steps > 1: |
|
|
from transformers import __version__ as transformers_version |
|
|
if Version(transformers_version) <= Version('4.45.2'): |
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
|
if force_float32: |
|
|
args.bf16_full_eval = False |
|
|
args.fp16_full_eval = False |
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
|
args.bf16_full_eval = True |
|
|
args.fp16_full_eval = False |
|
|
elif not bf16_full_eval and not fp16_full_eval: |
|
|
args.bf16_full_eval = args.bf16 |
|
|
args.fp16_full_eval = args.fp16 |
|
|
_output_logits = False |
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
|
if _output_logits: |
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
|
pass |
|
|
else: |
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
|
max_seq_length = model.max_seq_length |
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
|
if model is not None and hasattr(model, 'for_training'): |
|
|
model.for_training() |
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
|
if 'processing_class' in locals(): |
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
|
data_collator = DataCollatorForSeq2Seq( |
|
|
__tokenizer.tokenizer, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
else: |
|
|
data_collator = TransformersDataCollatorForLanguageModeling( |
|
|
__tokenizer.tokenizer, |
|
|
mlm = False, |
|
|
mlm_probability = 0.0, |
|
|
pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), |
|
|
) |
|
|
other_metrics = [] |
|
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
|
PatchRLStatistics('reward_trainer', other_metrics) |
|
|
|
|
|
|
|
|
|
|
|
if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: |
|
|
if getattr(args, "_n_gpu", 1) != 1: |
|
|
args._n_gpu = 1 |
|
|
if "model" in locals() and hasattr(model, "for_training"): |
|
|
model.for_training() |
|
|
super().__init__( |
|
|
model = model, |
|
|
args = args, |
|
|
data_collator = data_collator, |
|
|
train_dataset = train_dataset, |
|
|
eval_dataset = eval_dataset, |
|
|
processing_class = processing_class, |
|
|
compute_metrics = compute_metrics, |
|
|
callbacks = callbacks, |
|
|
optimizer_cls_and_kwargs = optimizer_cls_and_kwargs, |
|
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
|
peft_config = peft_config,**kwargs) |
|
|
if "model" in locals() and hasattr(model, "for_inference"): |
|
|
model.for_inference() |
|
|
if hasattr(self, 'neftune_hook_handle'): |
|
|
self.neftune_hook_handle.remove() |
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
|
pass |
|
|
if hasattr(self, 'accelerator'): |
|
|
scaler = self.accelerator.scaler |
|
|
current_model = model |
|
|
while hasattr(current_model, 'model'): |
|
|
current_model.accelerator_scaler = scaler |
|
|
current_model = current_model.model |
|
|
current_model.accelerator_scaler = scaler |
|
|
pass |
|
|
if hasattr(self, 'train'): |
|
|
self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) |
|
|
pass |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
if hasattr(logger, "addFilter"): |
|
|
import logging |
|
|
class HideLoggingMessage(logging.Filter): |
|
|
def __init__(self, text): self.text = text |
|
|
def filter(self, x): return not (self.text in x.getMessage()) |
|
|
pass |
|
|
logger.addFilter(HideLoggingMessage("`use_cache=True`")) |
|
|
|
|
|
|