File size: 9,343 Bytes
011336e
 
 
 
 
 
 
 
 
 
 
95dd43a
011336e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95dd43a
011336e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd249cc
 
 
 
 
 
011336e
 
 
cd249cc
 
 
011336e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""Claude-powered agents used in the deployment readiness workflow."""

from __future__ import annotations

import asyncio
import os
from dataclasses import asdict
from typing import Dict, List, Optional

import anthropic

from enhanced_mcp_client import EnhancedMCPClient
from schemas import (
    ChecklistItem,
    DocumentationBundle,
    EvidencePacket,
    ReadinessPlan,
    ReadinessRequest,
    ReviewFinding,
    ReviewReport,
)
from sponsor_llms import SponsorLLMClient

MODEL_ID = os.getenv("CLAUDE_MODEL", "claude-3-5-sonnet-20241022")
DEFAULT_MAX_TOKENS = int(os.getenv("CLAUDE_MAX_TOKENS", "1500"))


class ClaudeAgent:
    """Base helper that wraps Anthropic's Messages API with graceful fallbacks."""

    def __init__(self, name: str, system_prompt: str):
        self.name = name
        self.system_prompt = system_prompt
        api_key = os.getenv("ANTHROPIC_API_KEY")
        self.client: Optional[anthropic.Anthropic] = None
        if api_key:
            self.client = anthropic.Anthropic(api_key=api_key)

    def _call_claude(self, user_prompt: str) -> str:
        if not self.client:
            return (
                f"[offline-mode] {self.name} would respond to: {user_prompt[:180]}..."
            )

        response = self.client.messages.create(
            model=MODEL_ID,
            max_tokens=DEFAULT_MAX_TOKENS,
            temperature=0.2,
            system=self.system_prompt,
            messages=[{"role": "user", "content": user_prompt}]
        )
        return response.content[0].text.strip()


class PlannerAgent(ClaudeAgent):
    def __init__(self) -> None:
        super().__init__(
            name="Planner",
            system_prompt=(
                "You are a release engineer. Return JSON with a summary and a list of"
                " checklist items (title, description, category, owners, status)."
                " Categories should cover tests, infra, observability, docs, risk mitigation."
            ),
        )

    def run(self, request: ReadinessRequest) -> ReadinessPlan:
        prompt = (
            "Build a release readiness plan for the following data:\n"
            f"Project: {request.project_name}\n"
            f"Goal: {request.release_goal}\n"
            f"Code summary: {request.code_summary}\n"
            f"Infra notes: {request.infra_notes or 'n/a'}\n"
            f"Stakeholders: {', '.join(request.stakeholders or ['eng'])}"
        )
        raw = self._call_claude(prompt)
        plan_dict = _safe_json(raw, fallback={})
        summary = plan_dict.get("summary", raw[:200])
        items_payload: List[Dict] = plan_dict.get("items", [])
        items = [
            ChecklistItem(
                title=item.get("title", "Untitled"),
                description=item.get("description", ""),
                category=item.get("category", "general"),
                owners=item.get("owners", []),
                status=item.get("status", "todo"),
            )
            for item in items_payload
        ]
        return ReadinessPlan(summary=summary, items=items)


class EvidenceAgent(ClaudeAgent):
    def __init__(self) -> None:
        super().__init__(
            name="Evidence",
            system_prompt=(
                "You operate like a DevOps SRE. When given a plan, produce three lists:"
                " findings (signals that support shipping), gaps (missing data), and"
                " signals (calls you would make to MCP tools or logs). Output JSON."
            ),
        )
        self.mcp_client = EnhancedMCPClient()

    def run(self, plan: ReadinessPlan, project_name: str = "") -> EvidencePacket:
        # Gather real MCP signals
        mcp_signals = []
        try:
            # Try to get existing event loop
            try:
                loop = asyncio.get_event_loop()
                if loop.is_running():
                    # If loop is running, we need to use a thread
                    import concurrent.futures
                    with concurrent.futures.ThreadPoolExecutor() as executor:
                        future = executor.submit(
                            asyncio.run,
                            self.mcp_client.gather_deployment_signals(
                                project_name or "project", [item.title for item in plan.items]
                            )
                        )
                        mcp_signals = future.result(timeout=5)
                else:
                    mcp_signals = loop.run_until_complete(
                        self.mcp_client.gather_deployment_signals(
                            project_name or "project", [item.title for item in plan.items]
                        )
                    )
            except RuntimeError:
                # No event loop, create new one
                mcp_signals = asyncio.run(
                    self.mcp_client.gather_deployment_signals(
                        project_name or "project", [item.title for item in plan.items]
                    )
                )
        except Exception as e:
            mcp_signals = [f"MCP signal gathering: {str(e)[:100]}"]

        prompt = (
            "Given this deployment plan, synthesize evidence:"
            f"\n{plan.summary}\nItems: {[_safe_truncate(asdict(item)) for item in plan.items]}"
            f"\n\nMCP Tool Signals: {', '.join(mcp_signals)}"
        )
        raw = self._call_claude(prompt)
        payload = _safe_json(raw, fallback={})
        return EvidencePacket(
            findings=payload.get("findings", [raw[:200]]),
            gaps=payload.get("gaps", []),
            signals=mcp_signals + payload.get("signals", []),
        )


class DocumentationAgent(ClaudeAgent):
    def __init__(self) -> None:
        super().__init__(
            name="Documentation",
            system_prompt=(
                "You are a technical writer. Create JSON with changelog_entry,"
                " readme_snippet, and announcement_draft. Be concise but specific."
            ),
        )

    def run(self, request: ReadinessRequest, evidence: EvidencePacket) -> DocumentationBundle:
        prompt = (
            "Author deployment communications. Project: {project}. Goal: {goal}."
            " Use this evidence: {evidence}."
        ).format(
            project=request.project_name,
            goal=request.release_goal,
            evidence=evidence.findings,
        )
        raw = self._call_claude(prompt)
        payload = _safe_json(raw, fallback={})
        return DocumentationBundle(
            changelog_entry=payload.get("changelog_entry", raw[:200]),
            readme_snippet=payload.get("readme_snippet", ""),
            announcement_draft=payload.get("announcement_draft", ""),
        )


class SynthesisAgent:
    """Uses sponsor LLMs (Gemini/OpenAI) to cross-validate evidence."""

    def __init__(self) -> None:
        self.sponsor_client = SponsorLLMClient()

    def run(
        self,
        evidence: EvidencePacket,
        plan_summary: str,
        preferred_llms: Optional[List[str]] = None,
    ) -> Dict[str, str]:
        """Synthesize evidence using sponsor LLMs for bonus points."""
        all_evidence = evidence.findings + evidence.signals
        synthesis = self.sponsor_client.cross_validate_evidence(
            "\n".join(all_evidence[:5]),
            plan_summary,
            preferred_llms,
        )
        return synthesis


class ReviewerAgent(ClaudeAgent):
    def __init__(self) -> None:
        super().__init__(
            name="Reviewer",
            system_prompt=(
                "You chair a release board. Compare plans, evidence, and docs."
                " Respond with JSON: decision (approve/block/needs_info), confidence"
                " 0-1, findings (severity+note)."
            ),
        )

    def run(
        self,
        plan: ReadinessPlan,
        evidence: EvidencePacket,
        docs: DocumentationBundle,
        sponsor_synthesis: Optional[Dict[str, str]] = None,
    ) -> ReviewReport:
        synthesis_context = ""
        if sponsor_synthesis:
            synthesis_context = f"\nSponsor LLM Synthesis: {sponsor_synthesis}"

        prompt = (
            "Review release package. Plan: {plan}. Evidence: {evidence}. Docs: {docs}."
            "{synthesis}"
        ).format(
            plan=plan.summary,
            evidence=evidence.findings + evidence.gaps,
            docs=docs.changelog_entry,
            synthesis=synthesis_context,
        )
        raw = self._call_claude(prompt)
        payload = _safe_json(raw, fallback={})
        findings_payload = payload.get("findings", [])
        findings = [
            ReviewFinding(
                severity=item.get("severity", "medium"),
                note=item.get("note", "")
            )
            for item in findings_payload
        ]
        return ReviewReport(
            decision=payload.get("decision", "needs_info"),
            confidence=float(payload.get("confidence", 0.4)),
            findings=findings,
        )


def _safe_json(text: str, fallback: Dict) -> Dict:
    import json

    try:
        return json.loads(text)
    except json.JSONDecodeError:
        return fallback


def _safe_truncate(value: Dict, limit: int = 240) -> str:
    text = str(value)
    return text if len(text) <= limit else text[:limit] + "…"