File size: 1,966 Bytes
a8063f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""RAG Agent using LlamaIndex for codebase analysis."""

import os
from typing import Dict, List, Optional
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.llms.openai import OpenAI
from llama_index.core.node_parser import SimpleNodeParser

class RAGAgent:
    """Agent for RAG-based codebase analysis using LlamaIndex."""

    def __init__(self):
        self.index = None
        self.query_engine = None
        self._setup_llm()

    def _setup_llm(self):
        """Configure LlamaIndex settings."""
        api_key = os.getenv("OPENAI_API_KEY")
        if api_key:
            Settings.llm = OpenAI(model="gpt-4o-mini", api_key=api_key)

    def index_codebase(self, directory_path: str) -> str:
        """Index the codebase directory."""
        if not os.getenv("OPENAI_API_KEY"):
            return "❌ OpenAI API Key required for LlamaIndex RAG."

        try:
            # Load documents
            reader = SimpleDirectoryReader(
                input_dir=directory_path,
                recursive=True,
                exclude_hidden=True,
                required_exts=[".py", ".js", ".ts", ".md", ".json", ".yml", ".yaml"]
            )
            documents = reader.load_data()

            # Create index
            self.index = VectorStoreIndex.from_documents(documents)
            self.query_engine = self.index.as_query_engine()
            
            return f"βœ… Indexed {len(documents)} files successfully."
        except Exception as e:
            return f"❌ Indexing failed: {str(e)}"

    def query_codebase(self, query: str) -> str:
        """Query the indexed codebase."""
        if not self.query_engine:
            return "⚠️ Codebase not indexed. Please analyze a folder first."
        
        try:
            response = self.query_engine.query(query)
            return str(response)
        except Exception as e:
            return f"❌ Query failed: {str(e)}"