HIMANSHUKUMARJHA commited on
Commit
1cea319
Β·
1 Parent(s): 7b892cd

Remove sponsor LLM synthesis from UI, update for multi-track compatibility

Browse files
Files changed (4) hide show
  1. README.md +24 -19
  2. app.py +1 -13
  3. export_utils.py +2 -10
  4. orchestrator.py +2 -2
README.md CHANGED
@@ -14,6 +14,10 @@ tags:
14
  - multi-agent
15
  - deployment
16
  - productivity
 
 
 
 
17
  ---
18
 
19
  # πŸš€ Deployment Readiness Copilot
@@ -22,16 +26,15 @@ tags:
22
 
23
  ## 🎯 Overview
24
 
25
- The Deployment Readiness Copilot is a productivity-focused, developer-centric tool that automates deployment readiness checks using a multi-agent architecture. It combines Claude's reasoning with sponsor LLMs (Gemini/OpenAI) and MCP tool integration to provide comprehensive pre-deployment validation.
26
 
27
  ## ✨ Features
28
 
29
- - **πŸ€– Multi-Agent Pipeline**: Planner β†’ Evidence Gatherer β†’ Synthesis β†’ Documentation β†’ Reviewer β†’ Docs Lookup β†’ Deployment
30
  - **πŸ“ Codebase Analysis**: Upload folder (ZIP) or GitHub repo β†’ Auto-detect framework, dependencies, configs
31
  - **πŸ“š Context7 Documentation Integration**: Automatic framework/platform documentation lookups
32
  - **πŸ”§ MCP Tool Integration**: Real-time deployment signals from Hugging Face Spaces, Vercel, Context7, and GitHub
33
  - **πŸš€ Multi-Platform Deployment**: Deploy to Vercel, Netlify, AWS, GCP, Azure, Railway, Render, Fly.io, Kubernetes, Docker
34
- - **πŸŽ“ Sponsor LLM Support**: Cross-validation using Google Gemini 2.0 and OpenAI GPT-4o-mini
35
  - **πŸ“ Auto-Documentation**: Generates changelog entries, README snippets, and announcement drafts
36
  - **βœ… Risk Assessment**: Automated review with confidence scoring and actionable findings
37
 
@@ -54,10 +57,9 @@ The Deployment Readiness Copilot is a productivity-focused, developer-centric to
54
 
55
  1. **Planner Agent (Claude)**: Analyzes project context and generates deployment readiness checklist
56
  2. **Evidence Agent (Claude + MCP)**: Gathers real deployment signals via MCP tools
57
- 3. **Synthesis Agent (Gemini/OpenAI)**: Cross-validates evidence using sponsor LLMs
58
- 4. **Documentation Agent (Claude)**: Generates deployment communications
59
- 5. **Reviewer Agent (Claude)**: Final risk assessment with confidence scoring
60
- 6. **Documentation Lookup Agent (Context7)**: Looks up framework/platform docs for:
61
  - Deployment guides
62
  - Dependency compatibility
63
  - Config validation
@@ -65,7 +67,7 @@ The Deployment Readiness Copilot is a productivity-focused, developer-centric to
65
  - Environment variables
66
  - Migration guides
67
  - Observability setup
68
- 7. **Deployment Agent (GitHub)**: Prepares and executes deployment actions
69
 
70
  ### MCP Tools Used
71
 
@@ -79,8 +81,6 @@ The Deployment Readiness Copilot is a productivity-focused, developer-centric to
79
 
80
  1. **Set Environment Variables** (in HF Space Secrets):
81
  - `ANTHROPIC_API_KEY`: Your Claude API key (required)
82
- - `GOOGLE_API_KEY` or `GEMINI_API_KEY`: For Gemini synthesis (optional)
83
- - `OPENAI_API_KEY`: For OpenAI synthesis (optional)
84
  - `HF_TOKEN`: For Hugging Face MCP tools (optional)
85
  - `GITHUB_TOKEN`: For GitHub deployment actions (optional)
86
  - `GITHUB_REPO`: Repository in format `owner/repo` (optional, for deployments)
@@ -112,33 +112,38 @@ The system will:
112
  1. Generate a deployment readiness plan
113
  2. Gather evidence via MCP tools
114
  3. Lookup framework/platform documentation via Context7
115
- 4. Synthesize findings with sponsor LLMs
116
- 5. Create documentation artifacts
117
- 6. Prepare GitHub deployment actions (if configured)
118
- 7. Provide final review with risk assessment
119
 
120
  ## 🎯 Hackathon Submission
121
 
122
- **Track**: `mcp-in-action-track-2` (MCP in Action)
 
 
 
 
 
 
123
 
124
  **Key Highlights**:
125
  - βœ… Autonomous multi-agent behavior with planning, reasoning, and execution
126
  - βœ… MCP servers used as tools (Context7, HF Spaces, Vercel, GitHub)
127
  - βœ… Context7 integration for comprehensive documentation lookups
128
  - βœ… GitHub deployment actions for direct deployment execution
129
- - βœ… Gradio 6 app with MCP server support (`mcp_server=True`)
130
- - βœ… Sponsor LLM integration (Gemini, OpenAI)
131
  - βœ… Real-world productivity use case for developers
 
132
 
133
  ## πŸ”§ Technical Stack
134
 
135
  - **Gradio 5.49.1**: UI framework with MCP server support
136
  - **Anthropic Claude 3.5 Sonnet**: Primary reasoning engine
137
- - **Google Gemini 2.0 Flash**: Sponsor LLM for evidence synthesis
138
- - **OpenAI GPT-4o-mini**: Alternative sponsor LLM
139
  - **Hugging Face Hub**: MCP client for tool integration
140
  - **Context7 MCP**: Documentation lookup service
141
  - **GitHub API/MCP**: Deployment actions and workflow triggers
 
 
142
 
143
  ## πŸ“ License
144
 
 
14
  - multi-agent
15
  - deployment
16
  - productivity
17
+ - context7
18
+ - github
19
+ - vercel
20
+ - mcp-server
21
  ---
22
 
23
  # πŸš€ Deployment Readiness Copilot
 
26
 
27
  ## 🎯 Overview
28
 
29
+ The Deployment Readiness Copilot is a productivity-focused, developer-centric tool that automates deployment readiness checks using a multi-agent architecture. It combines Claude's reasoning with MCP tool integration to provide comprehensive pre-deployment validation across multiple platforms.
30
 
31
  ## ✨ Features
32
 
33
+ - **πŸ€– Multi-Agent Pipeline**: Planner β†’ Evidence Gatherer β†’ Documentation β†’ Reviewer β†’ Docs Lookup β†’ Deployment
34
  - **πŸ“ Codebase Analysis**: Upload folder (ZIP) or GitHub repo β†’ Auto-detect framework, dependencies, configs
35
  - **πŸ“š Context7 Documentation Integration**: Automatic framework/platform documentation lookups
36
  - **πŸ”§ MCP Tool Integration**: Real-time deployment signals from Hugging Face Spaces, Vercel, Context7, and GitHub
37
  - **πŸš€ Multi-Platform Deployment**: Deploy to Vercel, Netlify, AWS, GCP, Azure, Railway, Render, Fly.io, Kubernetes, Docker
 
38
  - **πŸ“ Auto-Documentation**: Generates changelog entries, README snippets, and announcement drafts
39
  - **βœ… Risk Assessment**: Automated review with confidence scoring and actionable findings
40
 
 
57
 
58
  1. **Planner Agent (Claude)**: Analyzes project context and generates deployment readiness checklist
59
  2. **Evidence Agent (Claude + MCP)**: Gathers real deployment signals via MCP tools
60
+ 3. **Documentation Agent (Claude)**: Generates deployment communications
61
+ 4. **Reviewer Agent (Claude)**: Final risk assessment with confidence scoring
62
+ 5. **Documentation Lookup Agent (Context7)**: Looks up framework/platform docs for:
 
63
  - Deployment guides
64
  - Dependency compatibility
65
  - Config validation
 
67
  - Environment variables
68
  - Migration guides
69
  - Observability setup
70
+ 6. **Deployment Agent (GitHub)**: Prepares and executes deployment actions
71
 
72
  ### MCP Tools Used
73
 
 
81
 
82
  1. **Set Environment Variables** (in HF Space Secrets):
83
  - `ANTHROPIC_API_KEY`: Your Claude API key (required)
 
 
84
  - `HF_TOKEN`: For Hugging Face MCP tools (optional)
85
  - `GITHUB_TOKEN`: For GitHub deployment actions (optional)
86
  - `GITHUB_REPO`: Repository in format `owner/repo` (optional, for deployments)
 
112
  1. Generate a deployment readiness plan
113
  2. Gather evidence via MCP tools
114
  3. Lookup framework/platform documentation via Context7
115
+ 4. Create documentation artifacts
116
+ 5. Prepare GitHub deployment actions (if configured)
117
+ 6. Provide final review with risk assessment
 
118
 
119
  ## 🎯 Hackathon Submission
120
 
121
+ **Primary Track**: `mcp-in-action-track-2` (MCP in Action)
122
+
123
+ **Multi-Track Compatibility**:
124
+ - βœ… **Track 1 (Best MCP Use)**: Integrates 4+ MCP servers (Context7, HF Spaces, Vercel, GitHub) with comprehensive tool usage
125
+ - βœ… **Track 2 (MCP in Action)**: Autonomous multi-agent behavior with planning, reasoning, and execution via MCP tools
126
+ - βœ… **Track 3 (Community/Innovation)**: Developer productivity tool solving real-world deployment challenges
127
+ - βœ… **Track 4 (Best Integration)**: Seamless integration across multiple platforms and services
128
 
129
  **Key Highlights**:
130
  - βœ… Autonomous multi-agent behavior with planning, reasoning, and execution
131
  - βœ… MCP servers used as tools (Context7, HF Spaces, Vercel, GitHub)
132
  - βœ… Context7 integration for comprehensive documentation lookups
133
  - βœ… GitHub deployment actions for direct deployment execution
134
+ - βœ… Gradio app with MCP server support (`mcp_server=True`)
 
135
  - βœ… Real-world productivity use case for developers
136
+ - βœ… 10 utility improvements covering security, cost, performance, CI/CD, monitoring, and collaboration
137
 
138
  ## πŸ”§ Technical Stack
139
 
140
  - **Gradio 5.49.1**: UI framework with MCP server support
141
  - **Anthropic Claude 3.5 Sonnet**: Primary reasoning engine
 
 
142
  - **Hugging Face Hub**: MCP client for tool integration
143
  - **Context7 MCP**: Documentation lookup service
144
  - **GitHub API/MCP**: Deployment actions and workflow triggers
145
+ - **Vercel MCP**: Deployment validation and management
146
+ - **Python 3.10+**: Core runtime
147
 
148
  ## πŸ“ License
149
 
app.py CHANGED
@@ -119,7 +119,7 @@ def run_full_pipeline(
119
  update_readme: bool,
120
  stakeholders: str,
121
  environment: str
122
- ) -> Tuple[Dict, str, str, str, str, str, str, str, str, str, str, str, str]:
123
  """Run complete pipeline with analysis, readiness check, and deployment."""
124
 
125
  # Step 1: Analyze codebase if folder/repo provided
@@ -340,13 +340,6 @@ def run_full_pipeline(
340
  icon = "βœ…" if status == "completed" else "⏳" if status == "running" else "❌" if status == "failed" else "⏭️"
341
  progress_text += f"{icon} **{name}**: {message}\n"
342
 
343
- sponsor_text = ""
344
- if "sponsor_synthesis" in result:
345
- sponsor_text = "\n".join([
346
- f"**{k}**: {v}"
347
- for k, v in result["sponsor_synthesis"].items()
348
- ]) or "No sponsor LLM synthesis available"
349
-
350
  docs_text = ""
351
  if "docs_references" in result and result["docs_references"]:
352
  docs_refs = result["docs_references"]
@@ -398,7 +391,6 @@ def run_full_pipeline(
398
  return (
399
  result,
400
  full_analysis,
401
- sponsor_text,
402
  docs_text,
403
  deploy_text,
404
  readme_update_status,
@@ -514,9 +506,6 @@ def build_interface() -> gr.Blocks:
514
  with gr.Column(scale=2):
515
  gr.Markdown("### πŸ“‹ Full Results")
516
  output = gr.JSON(label="Complete Output", height=400)
517
- with gr.Column(scale=1):
518
- gr.Markdown("### 🎯 Insights")
519
- sponsor_output = gr.Textbox(label="Sponsor LLM Synthesis", lines=8, interactive=False)
520
 
521
  with gr.Row():
522
  with gr.Column():
@@ -598,7 +587,6 @@ def build_interface() -> gr.Blocks:
598
  outputs=[
599
  output,
600
  progress_output,
601
- sponsor_output,
602
  docs_output,
603
  deploy_output,
604
  readme_status,
 
119
  update_readme: bool,
120
  stakeholders: str,
121
  environment: str
122
+ ) -> Tuple[Dict, str, str, str, str, str, str, str, str, str, str, str, str, str, str]:
123
  """Run complete pipeline with analysis, readiness check, and deployment."""
124
 
125
  # Step 1: Analyze codebase if folder/repo provided
 
340
  icon = "βœ…" if status == "completed" else "⏳" if status == "running" else "❌" if status == "failed" else "⏭️"
341
  progress_text += f"{icon} **{name}**: {message}\n"
342
 
 
 
 
 
 
 
 
343
  docs_text = ""
344
  if "docs_references" in result and result["docs_references"]:
345
  docs_refs = result["docs_references"]
 
391
  return (
392
  result,
393
  full_analysis,
 
394
  docs_text,
395
  deploy_text,
396
  readme_update_status,
 
506
  with gr.Column(scale=2):
507
  gr.Markdown("### πŸ“‹ Full Results")
508
  output = gr.JSON(label="Complete Output", height=400)
 
 
 
509
 
510
  with gr.Row():
511
  with gr.Column():
 
587
  outputs=[
588
  output,
589
  progress_output,
 
590
  docs_output,
591
  deploy_output,
592
  readme_status,
export_utils.py CHANGED
@@ -97,16 +97,8 @@ def export_markdown(data: Dict[str, Any], filename: Optional[str] = None) -> str
97
  md_lines.append(f"- **{action_type}**: {message}")
98
  md_lines.append("")
99
 
100
- # Sponsor synthesis
101
- if "sponsor_synthesis" in data:
102
- md_lines.extend([
103
- "## Sponsor LLM Synthesis",
104
- ""
105
- ])
106
- for key, value in data["sponsor_synthesis"].items():
107
- md_lines.append(f"### {key}")
108
- md_lines.append(str(value))
109
- md_lines.append("")
110
 
111
  output = "\n".join(md_lines)
112
  if filename:
 
97
  md_lines.append(f"- **{action_type}**: {message}")
98
  md_lines.append("")
99
 
100
+ # Evidence synthesis (internal optimization, not exposed)
101
+ # Synthesis results are used internally but not exported to avoid confusion
 
 
 
 
 
 
 
 
102
 
103
  output = "\n".join(md_lines)
104
  if filename:
orchestrator.py CHANGED
@@ -105,7 +105,7 @@ class ReadinessOrchestrator:
105
 
106
  # Synthesis
107
  if evidence and plan:
108
- progress.update_agent("Synthesis", AgentStatus.RUNNING, "Cross-validating with sponsor LLMs...")
109
  sponsor_synthesis = safe_execute(
110
  self.synthesis.run,
111
  evidence,
@@ -209,7 +209,7 @@ class ReadinessOrchestrator:
209
  deployment=DeploymentActions(**deployment_config) if deployment_config else None,
210
  )
211
  result = asdict(response)
212
- result["sponsor_synthesis"] = sponsor_synthesis
213
  result["progress"] = progress.to_dict()
214
  result["partial_results"] = partial.to_dict()
215
  return result
 
105
 
106
  # Synthesis
107
  if evidence and plan:
108
+ progress.update_agent("Synthesis", AgentStatus.RUNNING, "Cross-validating evidence...")
109
  sponsor_synthesis = safe_execute(
110
  self.synthesis.run,
111
  evidence,
 
209
  deployment=DeploymentActions(**deployment_config) if deployment_config else None,
210
  )
211
  result = asdict(response)
212
+ # sponsor_synthesis used internally but not exposed in UI
213
  result["progress"] = progress.to_dict()
214
  result["partial_results"] = partial.to_dict()
215
  return result