"""Performance optimization suggestions.""" from __future__ import annotations from typing import Any, Dict, List, Optional class PerformanceOptimizer: """Provides performance optimization recommendations.""" def analyze_performance(self, framework: str, platform: str, analysis: Dict[str, Any]) -> Dict[str, Any]: """Analyze and suggest performance optimizations.""" optimizations = [] score = 100 # Framework-specific optimizations if framework.lower() == "next.js": optimizations.extend([ { "category": "build", "priority": "high", "suggestion": "Enable static generation for pages where possible", "impact": "Reduces server load and improves response time" }, { "category": "images", "priority": "medium", "suggestion": "Use next/image for automatic image optimization", "impact": "Reduces image size by 30-50%" }, { "category": "caching", "priority": "high", "suggestion": "Implement ISR (Incremental Static Regeneration)", "impact": "Improves page load time significantly" } ]) score -= 10 if not analysis.get("has_docker") else 0 elif framework.lower() in ["django", "flask", "fastapi"]: optimizations.extend([ { "category": "database", "priority": "high", "suggestion": "Enable database connection pooling", "impact": "Reduces database connection overhead" }, { "category": "caching", "priority": "high", "suggestion": "Implement Redis caching layer", "impact": "Improves response time by 40-60%" }, { "category": "async", "priority": "medium", "suggestion": "Use async/await for I/O operations", "impact": "Improves concurrency and throughput" } ]) # Platform-specific optimizations if platform.lower() == "vercel": optimizations.append({ "category": "edge", "priority": "high", "suggestion": "Use Edge Functions for low-latency responses", "impact": "Reduces latency by 50-70%" }) if platform.lower() in ["aws", "gcp", "azure"]: optimizations.append({ "category": "cdn", "priority": "high", "suggestion": "Enable CDN for static assets", "impact": "Improves global load times" }) # General optimizations if not analysis.get("has_docker"): optimizations.append({ "category": "containerization", "priority": "medium", "suggestion": "Containerize application for consistent deployments", "impact": "Improves deployment reliability" }) if analysis.get("dependencies", []): dep_count = len(analysis.get("dependencies", [])) if dep_count > 50: optimizations.append({ "category": "dependencies", "priority": "medium", "suggestion": f"Review {dep_count} dependencies - consider removing unused ones", "impact": "Reduces bundle size and build time" }) return { "performance_score": max(0, score), "optimizations": optimizations, "priority_count": { "high": len([o for o in optimizations if o["priority"] == "high"]), "medium": len([o for o in optimizations if o["priority"] == "medium"]), "low": len([o for o in optimizations if o["priority"] == "low"]) }, "estimated_improvement": self._estimate_improvement(optimizations) } def _estimate_improvement(self, optimizations: List[Dict]) -> str: """Estimate performance improvement.""" high_priority = len([o for o in optimizations if o["priority"] == "high"]) if high_priority >= 3: return "30-50% performance improvement possible" elif high_priority >= 2: return "20-30% performance improvement possible" elif high_priority >= 1: return "10-20% performance improvement possible" else: return "Minor optimizations available"