Spaces:
Runtime error
Runtime error
File size: 12,099 Bytes
e336179 781d14b e336179 b3b4a74 781d14b b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 5edee0a e336179 781d14b b3b4a74 5edee0a e336179 781d14b b3b4a74 781d14b 5edee0a b3b4a74 781d14b b3b4a74 e336179 b3b4a74 e336179 781d14b b3b4a74 781d14b e336179 5edee0a b3b4a74 e336179 b3b4a74 e336179 b3b4a74 781d14b e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 5059d6c e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 781d14b b3b4a74 781d14b b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 e336179 b3b4a74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
import gradio as gr
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from diffusers.utils import load_image
import os
import gc
from PIL import Image
import time
# Initialize a dictionary to track LoRA usage
loras = [
{"title": "Anime", "repo": "prithivMLmods/Canopus-LoRA-Flux-Anime", "trigger_word": "Anime style", "image": "https://huggingface.co/prithivMLmods/Canopus-LoRA-Flux-Anime/resolve/main/1.jpg"},
{"title": "PixelArt", "repo": "prithivMLmods/Canopus-LoRA-Flux-PixelArt", "trigger_word": "PixelArt style", "image": "https://huggingface.co/prithivMLmods/Canopus-LoRA-Flux-PixelArt/resolve/main/1.jpg"},
{"title": "Ghibli", "repo": "prithivMLmods/Canopus-LoRA-Flux-Ghibli", "trigger_word": "Ghibli style", "image": "https://huggingface.co/prithivMLmods/Canopus-LoRA-Flux-Ghibli/resolve/main/1.jpg"},
{"title": "Realistic", "repo": "prithivMLmods/Canopus-LoRA-Flux-Realistic", "trigger_word": "Realistic style", "image": "https://huggingface.co/prithivMLmods/Canopus-LoRA-Flux-Realistic/resolve/main/1.jpg"},
{"title": "Claymation", "repo": "prithivMLmods/Canopus-LoRA-Flux-Claymation", "trigger_word": "Claymation style", "image": "https://huggingface.co/prithivMLmods/Canopus-LoRA-Flux-Claymation/resolve/main/1.jpg"}
]
lora_usage = {lora["title"]: 0 for lora in loras}
# Device and dtype setup for CPU
device = "cpu"
dtype = torch.float32 # Use float32 for CPU compatibility
# Initialize a single pipeline with CPU offloading
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained(
base_model,
torch_dtype=dtype,
vae=taef1,
)
# Enable CPU offloading to reduce memory usage
pipe.enable_model_cpu_offload()
# Custom CSS
css = """
#title {
text-align: center;
}
#gen_column {
display: flex;
align-items: flex-end;
}
#gen_btn {
height: 100%;
}
#gallery img {
border-radius: 10px !important;
border: 2px solid white !important;
}
#gallery .svelte-mg0r0q.selected img {
border: 2px solid #00ff00 !important;
}
#progress {
width: 100%;
}
#lora_list {
font-size: 12px;
}
"""
# Utility functions
def calculateDuration(message):
start_time = time.time()
yield None
end_time = time.time()
duration = end_time - start_time
print(f"{message}: {duration:.2f} seconds")
def update_lora_info(selected_index, custom_lora):
if selected_index is None and not custom_lora:
return "Select a LoRA to get started!🧨", None, gr.Button(visible=False)
if custom_lora:
return f"**Custom LoRA**: {custom_lora}", custom_lora, gr.Button(visible=True)
selected_lora = loras[selected_index]
return f"**Selected LoRA**: {selected_lora['title']}\n**Trigger Word**: {selected_lora['trigger_word']}", None, gr.Button(visible=False)
def remove_custom_lora(selected_index):
return None, gr.HTML(visible=False), gr.Button(visible=False), gr.Markdown(value=update_lora_info(selected_index, None)[0])
# Image generation function (combined for both text-to-image and image-to-image)
def generate_image(
prompt_mash,
image_input_path,
image_strength,
steps,
seed,
cfg_scale,
width,
height,
lora_scale
):
generator = torch.Generator(device=device).manual_seed(seed)
# Configure pipeline for text-to-image or image-to-image
kwargs = {
"prompt": prompt_mash,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"width": width,
"height": height,
"generator": generator,
"joint_attention_kwargs": {"scale": lora_scale},
"output_type": "pil",
"good_vae": good_vae,
}
if image_input_path:
image_input = load_image(image_input_path)
kwargs.update({
"image": image_input,
"strength": image_strength,
})
with calculateDuration("Generating image-to-image"):
result = pipe(**kwargs).images[0]
else:
with calculateDuration("Generating text-to-image"):
result = pipe(**kwargs).images[0]
# Clear memory after generation
torch.cuda.empty_cache() # No effect on CPU, but harmless
gc.collect()
return result
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale):
global lora_usage
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Increment the usage counter for the selected LoRA
lora_usage[selected_lora["title"]] += 1
pipe.unload_lora_weights()
pipe.load_lora_weights(lora_path)
if prompt == "":
prompt = trigger_word
else:
prompt_mash = f"{prompt}, {trigger_word}"
if randomize_seed:
seed = int(time.time())
# Generate the image
final_image = generate_image(
prompt_mash,
image_input,
image_strength,
steps,
seed,
cfg_scale,
width,
height,
lora_scale
)
return final_image, seed, gr.Markdown(value=f"**Seed**: {seed}", visible=True)
def generate_usage_chart():
sorted_usage = sorted(lora_usage.items(), key=lambda x: x[1], reverse=True)[:5]
labels = [item[0] for item in sorted_usage]
data = [item[1] for item in sorted_usage]
chart_config = {
"type": "bar",
"data": {
"labels": labels,
"datasets": [{
"label": "LoRA Usage Count",
"data": data,
"backgroundColor": [
"#4f46e5", # Indigo
"#10b981", # Emerald
"#f97316", # Orange
"#ef4444", # Red
"#3b82f6" # Blue
],
"borderColor": [
"#4f46e5",
"#10b981",
"#f97316",
"#ef4444",
"#3b82f6"
],
"borderWidth": 1
}]
},
"options": {
"scales": {
"y": {
"beginAtZero": True,
"title": {
"display": True,
"text": "Usage Count"
}
},
"x": {
"title": {
"display": True,
"text": "LoRA Title"
}
}
},
"plugins": {
"legend": {
"display": False
},
"title": {
"display": True,
"text": "Top 5 Most Used LoRAs"
}
}
}
}
return chart_config
# Gradio interface
with gr.Blocks(theme="YTheme/Minecraft", css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""<h1>FLUX LoRA DLC🥳</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
lora_usage_state = gr.State(lora_usage)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ choose the LoRA and type the prompt ")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA DLC's",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Accordion("LoRA Usage Statistics", open=False):
usage_chart = gr.HTML(label="LoRA Usage Chart")
refresh_chart_button = gr.Button("Refresh Usage Chart")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=10, step=1) # Reduced default steps
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=0.1)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1024, value=256, step=64) # Reduced default resolution
height = gr.Slider(label="Height", minimum=256, maximum=1024, value=256, step=64) # Reduced default resolution
with gr.Row():
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, value=0.8, step=0.1)
image_strength = gr.Slider(label="Image Strength", minimum=0, maximum=1, value=0.5, step=0.1, visible=False)
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
seed = gr.Number(label="Seed", value=42, precision=0, visible=False)
input_image = gr.Image(label="Input Image", type="filepath")
gallery.select(
fn=lambda idx: (idx, update_lora_info(idx, None)[0]),
inputs=None,
outputs=[selected_index, selected_info],
_js="""
(idx, gallery) => {
const items = document.querySelectorAll('#gallery .svelte-mg0r0q');
items.forEach((item, i) => {
item.classList.toggle('selected', i === idx);
});
return [idx, gallery];
}
"""
)
custom_lora.submit(
fn=lambda custom_lora: (None, *update_lora_info(None, custom_lora)),
inputs=custom_lora,
outputs=[selected_index, selected_info, custom_lora_info, custom_lora_button]
).then(
fn=lambda: gr.update(value=""),
inputs=None,
outputs=custom_lora
)
custom_lora_button.click(
fn=remove_custom_lora,
inputs=selected_index,
outputs=[custom_lora, custom_lora_info, custom_lora_button, selected_info]
)
input_image.upload(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=image_strength
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=input_image
)
input_image.clear(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=image_strength
)
randomize_seed.change(
fn=lambda randomize: gr.update(visible=not randomize),
inputs=randomize_seed,
outputs=seed
)
refresh_chart_button.click(
fn=generate_usage_chart,
inputs=[],
outputs=[usage_chart],
_js="return (chart) => chart"
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar]
).then(
fn=generate_usage_chart,
inputs=[],
outputs=[usage_chart],
_js="return (chart) => chart"
)
# Launch the app
app.launch(server_port=7860) |