Spaces:
Running
on
Zero
Running
on
Zero
feat: enhance mixed garbage detection and food residue assessment
Browse files- test_images/classifier.py +395 -0
- test_images/knowledge_base.py +86 -0
test_images/classifier.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import logging
|
| 5 |
+
from typing import Union, Tuple
|
| 6 |
+
from config import Config
|
| 7 |
+
from knowledge_base import GarbageClassificationKnowledge
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 12 |
+
"""
|
| 13 |
+
Preprocess image to meet Gemma3n requirements (512x512)
|
| 14 |
+
"""
|
| 15 |
+
# Convert to RGB if necessary
|
| 16 |
+
if image.mode != "RGB":
|
| 17 |
+
image = image.convert("RGB")
|
| 18 |
+
|
| 19 |
+
# Resize to 512x512 as required by Gemma3n
|
| 20 |
+
target_size = (512, 512)
|
| 21 |
+
|
| 22 |
+
# Calculate aspect ratio preserving resize
|
| 23 |
+
original_width, original_height = image.size
|
| 24 |
+
aspect_ratio = original_width / original_height
|
| 25 |
+
|
| 26 |
+
if aspect_ratio > 1:
|
| 27 |
+
# Width is larger
|
| 28 |
+
new_width = target_size[0]
|
| 29 |
+
new_height = int(target_size[0] / aspect_ratio)
|
| 30 |
+
else:
|
| 31 |
+
# Height is larger or equal
|
| 32 |
+
new_height = target_size[1]
|
| 33 |
+
new_width = int(target_size[1] * aspect_ratio)
|
| 34 |
+
|
| 35 |
+
# Resize image maintaining aspect ratio
|
| 36 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 37 |
+
|
| 38 |
+
# Create a new image with target size and paste the resized image
|
| 39 |
+
processed_image = Image.new(
|
| 40 |
+
"RGB", target_size, (255, 255, 255)
|
| 41 |
+
) # White background
|
| 42 |
+
|
| 43 |
+
# Calculate position to center the image
|
| 44 |
+
x_offset = (target_size[0] - new_width) // 2
|
| 45 |
+
y_offset = (target_size[1] - new_height) // 2
|
| 46 |
+
|
| 47 |
+
processed_image.paste(image, (x_offset, y_offset))
|
| 48 |
+
|
| 49 |
+
return processed_image
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class GarbageClassifier:
|
| 53 |
+
def __init__(self, config: Config = None):
|
| 54 |
+
self.config = config or Config()
|
| 55 |
+
self.knowledge = GarbageClassificationKnowledge()
|
| 56 |
+
self.processor = None
|
| 57 |
+
self.model = None
|
| 58 |
+
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
+
|
| 60 |
+
# Setup logging
|
| 61 |
+
logging.basicConfig(level=logging.INFO)
|
| 62 |
+
self.logger = logging.getLogger(__name__)
|
| 63 |
+
|
| 64 |
+
def load_model(self):
|
| 65 |
+
"""Load the model and processor"""
|
| 66 |
+
try:
|
| 67 |
+
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
|
| 68 |
+
|
| 69 |
+
# Load processor
|
| 70 |
+
kwargs = {}
|
| 71 |
+
if self.config.HF_TOKEN:
|
| 72 |
+
kwargs["token"] = self.config.HF_TOKEN
|
| 73 |
+
|
| 74 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 75 |
+
self.config.MODEL_NAME, **kwargs
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Load model
|
| 79 |
+
self.model = AutoModelForImageTextToText.from_pretrained(
|
| 80 |
+
self.config.MODEL_NAME,
|
| 81 |
+
torch_dtype=self.config.TORCH_DTYPE,
|
| 82 |
+
device_map=self.config.DEVICE_MAP,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
self.logger.info("Model loaded successfully")
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
self.logger.error(f"Error loading model: {str(e)}")
|
| 89 |
+
raise
|
| 90 |
+
|
| 91 |
+
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str, int]:
|
| 92 |
+
"""
|
| 93 |
+
Classify garbage in the image
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
image: PIL Image or path to image file
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
Tuple of (classification_result, detailed_analysis, confidence_score)
|
| 100 |
+
"""
|
| 101 |
+
if self.model is None or self.processor is None:
|
| 102 |
+
raise RuntimeError("Model not loaded. Call load_model() first.")
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
# Load and process image
|
| 106 |
+
if isinstance(image, str):
|
| 107 |
+
image = Image.open(image)
|
| 108 |
+
elif not isinstance(image, Image.Image):
|
| 109 |
+
raise ValueError("Image must be a PIL Image or file path")
|
| 110 |
+
|
| 111 |
+
# Preprocess image to meet Gemma3n requirements
|
| 112 |
+
processed_image = preprocess_image(image)
|
| 113 |
+
|
| 114 |
+
# Prepare messages with system prompt and user query
|
| 115 |
+
messages = [
|
| 116 |
+
{
|
| 117 |
+
"role": "system",
|
| 118 |
+
"content": [
|
| 119 |
+
{
|
| 120 |
+
"type": "text",
|
| 121 |
+
"text": self.knowledge.get_system_prompt(),
|
| 122 |
+
}
|
| 123 |
+
],
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"role": "user",
|
| 127 |
+
"content": [
|
| 128 |
+
{"type": "image", "image": processed_image},
|
| 129 |
+
{
|
| 130 |
+
"type": "text",
|
| 131 |
+
"text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage. Also provide a confidence score from 1-10 indicating how certain you are about your classification.",
|
| 132 |
+
},
|
| 133 |
+
],
|
| 134 |
+
},
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
+
# Apply chat template and tokenize
|
| 138 |
+
inputs = self.processor.apply_chat_template(
|
| 139 |
+
messages,
|
| 140 |
+
add_generation_prompt=True,
|
| 141 |
+
tokenize=True,
|
| 142 |
+
return_dict=True,
|
| 143 |
+
return_tensors="pt",
|
| 144 |
+
).to(self.model.device, dtype=self.model.dtype)
|
| 145 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 146 |
+
|
| 147 |
+
outputs = self.model.generate(
|
| 148 |
+
**inputs,
|
| 149 |
+
max_new_tokens=self.config.MAX_NEW_TOKENS,
|
| 150 |
+
disable_compile=True,
|
| 151 |
+
)
|
| 152 |
+
response = self.processor.batch_decode(
|
| 153 |
+
outputs[:, input_len:],
|
| 154 |
+
skip_special_tokens=True,
|
| 155 |
+
)[0]
|
| 156 |
+
|
| 157 |
+
# Extract classification from response
|
| 158 |
+
classification = self._extract_classification(response)
|
| 159 |
+
|
| 160 |
+
# Extract reasoning from response
|
| 161 |
+
reasoning = self._extract_reasoning(response)
|
| 162 |
+
|
| 163 |
+
# Extract confidence score from response
|
| 164 |
+
confidence_score = self._extract_confidence_score(response, classification)
|
| 165 |
+
|
| 166 |
+
return classification, reasoning, confidence_score
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
self.logger.error(f"Error during classification: {str(e)}")
|
| 170 |
+
import traceback
|
| 171 |
+
|
| 172 |
+
traceback.print_exc()
|
| 173 |
+
return "Error", f"Classification failed: {str(e)}", 0
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def _calculate_confidence_heuristic(self, response_lower: str, classification: str) -> int:
|
| 177 |
+
"""Calculate confidence based on response content and classification type"""
|
| 178 |
+
base_confidence = 5
|
| 179 |
+
|
| 180 |
+
# Confidence indicators (increase confidence)
|
| 181 |
+
high_confidence_words = ["clearly", "obviously", "definitely", "certainly", "exactly"]
|
| 182 |
+
medium_confidence_words = ["appears", "seems", "likely", "probably"]
|
| 183 |
+
|
| 184 |
+
# Uncertainty indicators (decrease confidence)
|
| 185 |
+
uncertainty_words = ["might", "could", "possibly", "maybe", "unclear", "difficult"]
|
| 186 |
+
|
| 187 |
+
# Adjust based on confidence words
|
| 188 |
+
for word in high_confidence_words:
|
| 189 |
+
if word in response_lower:
|
| 190 |
+
base_confidence += 2
|
| 191 |
+
break
|
| 192 |
+
|
| 193 |
+
for word in medium_confidence_words:
|
| 194 |
+
if word in response_lower:
|
| 195 |
+
base_confidence += 1
|
| 196 |
+
break
|
| 197 |
+
|
| 198 |
+
for word in uncertainty_words:
|
| 199 |
+
if word in response_lower:
|
| 200 |
+
base_confidence -= 2
|
| 201 |
+
break
|
| 202 |
+
|
| 203 |
+
# Classification-specific adjustments
|
| 204 |
+
if classification == "Unable to classify":
|
| 205 |
+
if any(indicator in response_lower for indicator in ["person", "people", "human", "living"]):
|
| 206 |
+
base_confidence += 1 # High confidence when clearly not waste
|
| 207 |
+
else:
|
| 208 |
+
base_confidence -= 1 # Lower confidence for unclear items
|
| 209 |
+
|
| 210 |
+
elif classification == "Error":
|
| 211 |
+
base_confidence = 1
|
| 212 |
+
|
| 213 |
+
else:
|
| 214 |
+
# Check for specific material mentions (increases confidence)
|
| 215 |
+
specific_materials = ["aluminum", "plastic", "glass", "metal", "cardboard", "paper"]
|
| 216 |
+
if any(material in response_lower for material in specific_materials):
|
| 217 |
+
base_confidence += 1
|
| 218 |
+
|
| 219 |
+
return min(max(base_confidence, 1), 10)
|
| 220 |
+
|
| 221 |
+
def _extract_confidence_score(self, response: str, classification: str) -> int:
|
| 222 |
+
"""Extract confidence score from response or calculate based on classification"""
|
| 223 |
+
response_lower = response.lower()
|
| 224 |
+
|
| 225 |
+
# Look for explicit confidence scores in the response
|
| 226 |
+
confidence_patterns = [
|
| 227 |
+
r'\*\*confidence score\*\*[:\s]*(\d+)', # For **Confidence Score**: format
|
| 228 |
+
r'confidence[:\s]*(\d+)',
|
| 229 |
+
r'confident[:\s]*(\d+)',
|
| 230 |
+
r'certainty[:\s]*(\d+)',
|
| 231 |
+
r'score[:\s]*(\d+)',
|
| 232 |
+
r'(\d+)/10',
|
| 233 |
+
r'(\d+)\s*out\s*of\s*10'
|
| 234 |
+
]
|
| 235 |
+
|
| 236 |
+
for pattern in confidence_patterns:
|
| 237 |
+
match = re.search(pattern, response_lower)
|
| 238 |
+
if match:
|
| 239 |
+
score = int(match.group(1))
|
| 240 |
+
return min(max(score, 1), 10) # Clamp between 1-10
|
| 241 |
+
|
| 242 |
+
# If no explicit score found, calculate based on classification indicators
|
| 243 |
+
return self._calculate_confidence_heuristic(response_lower, classification)
|
| 244 |
+
|
| 245 |
+
def _extract_classification(self, response: str) -> str:
|
| 246 |
+
"""Extract the main classification from the response - trust Gemma 3n intelligence more"""
|
| 247 |
+
response_lower = response.lower()
|
| 248 |
+
|
| 249 |
+
# Primary: Trust explicit category mentions from Gemma 3n
|
| 250 |
+
categories = self.knowledge.get_categories()
|
| 251 |
+
|
| 252 |
+
for category in categories:
|
| 253 |
+
if category.lower() in response_lower:
|
| 254 |
+
# Simple negation check
|
| 255 |
+
category_index = response_lower.find(category.lower())
|
| 256 |
+
context_before = response_lower[max(0, category_index - 20):category_index]
|
| 257 |
+
|
| 258 |
+
if not any(neg in context_before[-10:] for neg in ["not", "cannot", "isn't"]):
|
| 259 |
+
return category
|
| 260 |
+
|
| 261 |
+
# Secondary: Look for explicit mixed garbage warnings from model
|
| 262 |
+
mixed_warnings = [
|
| 263 |
+
"multiple garbage types detected",
|
| 264 |
+
"separate items",
|
| 265 |
+
"different garbage types",
|
| 266 |
+
"mixed together"
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
if any(warning in response_lower for warning in mixed_warnings):
|
| 270 |
+
return "Unable to classify"
|
| 271 |
+
|
| 272 |
+
# Tertiary: Basic material detection (simplified)
|
| 273 |
+
if any(material in response_lower for material in
|
| 274 |
+
["recyclable", "aluminum", "plastic", "glass", "metal", "cardboard"]):
|
| 275 |
+
# Check for contamination
|
| 276 |
+
if any(cont in response_lower for cont in ["obvious food", "substantial residue", "chunks", "liquids"]):
|
| 277 |
+
return "Food/Kitchen Waste"
|
| 278 |
+
return "Recyclable Waste"
|
| 279 |
+
|
| 280 |
+
if any(food in response_lower for food in ["food", "organic", "kitchen", "fruit", "vegetable"]):
|
| 281 |
+
return "Food/Kitchen Waste"
|
| 282 |
+
|
| 283 |
+
if any(hazard in response_lower for hazard in ["battery", "hazardous", "chemical", "toxic"]):
|
| 284 |
+
return "Hazardous Waste"
|
| 285 |
+
|
| 286 |
+
if any(other in response_lower for other in ["cigarette", "ceramic", "styrofoam"]):
|
| 287 |
+
return "Other Waste"
|
| 288 |
+
|
| 289 |
+
# Non-garbage detection
|
| 290 |
+
if any(non_garbage in response_lower for non_garbage in ["person", "people", "human", "living", "animal"]):
|
| 291 |
+
return "Unable to classify"
|
| 292 |
+
|
| 293 |
+
# Final fallback - let Gemma 3n's reasoning guide us
|
| 294 |
+
if any(unable in response_lower for unable in ["unable to classify", "cannot classify", "not garbage"]):
|
| 295 |
+
return "Unable to classify"
|
| 296 |
+
|
| 297 |
+
# Default to Unable to classify if unclear
|
| 298 |
+
return "Unable to classify"
|
| 299 |
+
|
| 300 |
+
def _extract_reasoning(self, response: str) -> str:
|
| 301 |
+
"""Extract only the reasoning content, removing all formatting markers and classification info"""
|
| 302 |
+
import re
|
| 303 |
+
|
| 304 |
+
# Remove all formatting markers
|
| 305 |
+
cleaned_response = response.replace("**Classification**:", "")
|
| 306 |
+
cleaned_response = cleaned_response.replace("**Reasoning**:", "")
|
| 307 |
+
cleaned_response = re.sub(r'\*\*.*?\*\*:', '', cleaned_response) # Remove any **text**: patterns
|
| 308 |
+
cleaned_response = cleaned_response.replace("**", "") # Remove remaining ** markers
|
| 309 |
+
|
| 310 |
+
# Remove category names that might appear at the beginning
|
| 311 |
+
categories = self.knowledge.get_categories()
|
| 312 |
+
for category in categories:
|
| 313 |
+
if cleaned_response.strip().startswith(category):
|
| 314 |
+
cleaned_response = cleaned_response.replace(category, "", 1)
|
| 315 |
+
break
|
| 316 |
+
|
| 317 |
+
# Remove common material names that might appear at the beginning
|
| 318 |
+
material_names = [
|
| 319 |
+
"Glass", "Plastic", "Metal", "Paper", "Cardboard", "Aluminum",
|
| 320 |
+
"Steel", "Iron", "Tin", "Foil", "Wood", "Ceramic", "Fabric",
|
| 321 |
+
"Recyclable Waste", "Food/Kitchen Waste", "Hazardous Waste", "Other Waste"
|
| 322 |
+
]
|
| 323 |
+
|
| 324 |
+
# Clean the response
|
| 325 |
+
cleaned_response = cleaned_response.strip()
|
| 326 |
+
|
| 327 |
+
# Remove material names at the beginning
|
| 328 |
+
for material in material_names:
|
| 329 |
+
if cleaned_response.startswith(material):
|
| 330 |
+
# Remove the material name and any following punctuation/whitespace
|
| 331 |
+
cleaned_response = cleaned_response[len(material):].lstrip(" .,;:")
|
| 332 |
+
break
|
| 333 |
+
|
| 334 |
+
# Split into sentences and clean up
|
| 335 |
+
sentences = []
|
| 336 |
+
|
| 337 |
+
# Split by common sentence endings, but keep the endings
|
| 338 |
+
parts = re.split(r'([.!?])\s+', cleaned_response)
|
| 339 |
+
|
| 340 |
+
# Rejoin parts to maintain sentence structure
|
| 341 |
+
reconstructed_parts = []
|
| 342 |
+
for i in range(0, len(parts), 2):
|
| 343 |
+
if i < len(parts):
|
| 344 |
+
sentence = parts[i]
|
| 345 |
+
if i + 1 < len(parts):
|
| 346 |
+
sentence += parts[i + 1] # Add the punctuation back
|
| 347 |
+
reconstructed_parts.append(sentence)
|
| 348 |
+
|
| 349 |
+
for part in reconstructed_parts:
|
| 350 |
+
part = part.strip()
|
| 351 |
+
if not part:
|
| 352 |
+
continue
|
| 353 |
+
|
| 354 |
+
# Skip parts that are just category names or material names
|
| 355 |
+
if part in categories or part.rstrip(".,;:") in material_names:
|
| 356 |
+
continue
|
| 357 |
+
|
| 358 |
+
# Skip parts that start with category names or material names
|
| 359 |
+
is_category_line = False
|
| 360 |
+
for item in categories + material_names:
|
| 361 |
+
if part.startswith(item):
|
| 362 |
+
is_category_line = True
|
| 363 |
+
break
|
| 364 |
+
|
| 365 |
+
if is_category_line:
|
| 366 |
+
continue
|
| 367 |
+
|
| 368 |
+
# Clean up the sentence
|
| 369 |
+
part = re.sub(r'^[A-Za-z\s]+:', '', part).strip() # Remove "Category:" type prefixes
|
| 370 |
+
|
| 371 |
+
if part and len(part) > 3: # Only keep meaningful content
|
| 372 |
+
sentences.append(part)
|
| 373 |
+
|
| 374 |
+
# Join sentences
|
| 375 |
+
reasoning = ' '.join(sentences)
|
| 376 |
+
|
| 377 |
+
# Final cleanup - remove any remaining standalone material words at the beginning
|
| 378 |
+
reasoning_words = reasoning.split()
|
| 379 |
+
if reasoning_words and reasoning_words[0] in [m.lower() for m in material_names]:
|
| 380 |
+
reasoning_words = reasoning_words[1:]
|
| 381 |
+
reasoning = ' '.join(reasoning_words)
|
| 382 |
+
|
| 383 |
+
# Ensure proper capitalization
|
| 384 |
+
if reasoning:
|
| 385 |
+
reasoning = reasoning[0].upper() + reasoning[1:] if len(reasoning) > 1 else reasoning.upper()
|
| 386 |
+
|
| 387 |
+
# Ensure proper punctuation
|
| 388 |
+
if not reasoning.endswith(('.', '!', '?')):
|
| 389 |
+
reasoning += '.'
|
| 390 |
+
|
| 391 |
+
return reasoning if reasoning else "Analysis not available"
|
| 392 |
+
|
| 393 |
+
def get_categories_info(self):
|
| 394 |
+
"""Get information about all categories"""
|
| 395 |
+
return self.knowledge.get_category_descriptions()
|
test_images/knowledge_base.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class GarbageClassificationKnowledge:
|
| 2 |
+
@staticmethod
|
| 3 |
+
def get_system_prompt():
|
| 4 |
+
return """You are a professional garbage classification expert. You need to carefully observe the items in the picture, analyze their materials, properties and uses, and then make accurate judgments according to garbage classification standards.
|
| 5 |
+
|
| 6 |
+
IMPORTANT: You should ONLY classify items that are actually garbage/waste. If the image contains people, living things, furniture, electronics in use, or other non-waste items, you should classify it as "Unable to classify" and explain that it's not garbage.
|
| 7 |
+
|
| 8 |
+
**MIXED GARBAGE HANDLING RULES:**
|
| 9 |
+
|
| 10 |
+
1. **Food Residue Assessment**:
|
| 11 |
+
- OBVIOUSLY VISIBLE FOOD (chunks, liquids, substantial residue): Container goes to "Food/Kitchen Waste" with warning "⚠️ Tip: Empty and rinse this container first, then it can be recycled!"
|
| 12 |
+
- MINOR RESIDUE (grease stains, light film, pizza box grease spots): Container remains "Recyclable Waste"
|
| 13 |
+
|
| 14 |
+
2. **Multiple Different Garbage Types**:
|
| 15 |
+
- If image shows clearly different waste categories mixed together (electronics + organic waste, batteries + food scraps, multiple unrelated garbage types): classify as "Unable to classify" with warning "⚠️ Warning: Multiple garbage types detected. Please separate items for proper classification."
|
| 16 |
+
- Recyclable container with food is the ONLY allowed mixed situation - handle with rule 1 above
|
| 17 |
+
- ALL other mixed scenarios must be classified as "Unable to classify"
|
| 18 |
+
|
| 19 |
+
STRICTLY ENFORCE: Only recyclable containers with food are permitted mixed classification. Everything else mixed = "Unable to classify" with separation warning.
|
| 20 |
+
|
| 21 |
+
Garbage classification standards:
|
| 22 |
+
|
| 23 |
+
**Recyclable Waste**:
|
| 24 |
+
- Paper: newspapers, magazines, books, various packaging papers, office paper, advertising flyers, cardboard boxes with light grease stains, copy paper, etc.
|
| 25 |
+
- Plastics: clean plastic bottles (#1 PETE, #2 HDPE), clean plastic containers, plastic bags, toothbrushes, cups, water bottles, plastic toys, etc. (NOT styrofoam #6 or heavily coated containers)
|
| 26 |
+
- Metals: clean aluminum cans, clean tin cans, toothpaste tubes, metal toys, metal stationery, nails, metal sheets, aluminum foil, etc.
|
| 27 |
+
- Glass: clean glass bottles and jars, broken glass pieces, mirrors, light bulbs, vacuum flasks, etc.
|
| 28 |
+
- Textiles: old clothing, textile products, shoes, curtains, towels, bags, etc.
|
| 29 |
+
- NOTE: Light grease stains or minor residue are acceptable for recycling. Only obvious food content requires cleaning first.
|
| 30 |
+
|
| 31 |
+
**Food/Kitchen Waste**:
|
| 32 |
+
- Food scraps: rice, noodles, bread, meat, fish, shrimp shells, crab shells, bones, etc.
|
| 33 |
+
- Fruit peels and cores: watermelon rinds, apple cores, orange peels, banana peels, nut shells, etc.
|
| 34 |
+
- Plants: withered branches and leaves, flowers, traditional Chinese medicine residue, etc.
|
| 35 |
+
- Expired food: expired canned food, cookies, candy, etc.
|
| 36 |
+
- Containers with obvious food content (chunks, liquids, substantial residue)
|
| 37 |
+
|
| 38 |
+
**Hazardous Waste**:
|
| 39 |
+
- Batteries: dry batteries, rechargeable batteries, button batteries, and all types of batteries
|
| 40 |
+
- Light tubes: energy-saving lamps, fluorescent tubes, incandescent bulbs, LED lights, etc.
|
| 41 |
+
- Pharmaceuticals: expired medicines, medicine packaging, thermometers, blood pressure monitors, etc.
|
| 42 |
+
- Paints: paint, coatings, glue, nail polish, cosmetics, etc.
|
| 43 |
+
- Others: pesticides, cleaning agents, agricultural chemicals, X-ray films, etc.
|
| 44 |
+
|
| 45 |
+
**Other Waste**:
|
| 46 |
+
- Contaminated non-recyclable paper: toilet paper, diapers, wet wipes, napkins, etc.
|
| 47 |
+
- Non-recyclable containers: styrofoam containers (#6 polystyrene), wax-coated containers, multi-material packaging
|
| 48 |
+
- Cigarette butts, ceramics, dust, disposable tableware (non-plastic)
|
| 49 |
+
- Large bones, hard shells, hard fruit pits (coconut shells, durian shells, walnut shells, corn cobs, etc.)
|
| 50 |
+
- Hair, pet waste, cat litter, etc.
|
| 51 |
+
|
| 52 |
+
**Unable to classify**:
|
| 53 |
+
- People, human faces, human body parts
|
| 54 |
+
- Living animals, pets
|
| 55 |
+
- Furniture, appliances, electronics in normal use
|
| 56 |
+
- Buildings, landscapes, vehicles
|
| 57 |
+
- Any item that is not intended to be discarded as waste
|
| 58 |
+
- Multiple different garbage types mixed together
|
| 59 |
+
|
| 60 |
+
Please observe the items in the image carefully according to the above classification standards and provide accurate classification results.
|
| 61 |
+
|
| 62 |
+
Format your response EXACTLY as follows:
|
| 63 |
+
|
| 64 |
+
**Classification**: [Category Name or "Unable to classify"]
|
| 65 |
+
**Reasoning**: [Brief explanation of why this item belongs to this category, or why it cannot be classified as garbage]
|
| 66 |
+
**Confidence Score**: [Number from 1-10]"""
|
| 67 |
+
|
| 68 |
+
@staticmethod
|
| 69 |
+
def get_categories():
|
| 70 |
+
return [
|
| 71 |
+
"Recyclable Waste",
|
| 72 |
+
"Food/Kitchen Waste",
|
| 73 |
+
"Hazardous Waste",
|
| 74 |
+
"Other Waste",
|
| 75 |
+
"Unable to classify",
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def get_category_descriptions():
|
| 80 |
+
return {
|
| 81 |
+
"Recyclable Waste": "Items that can be processed and reused, including paper, plastic, metal, glass, and textiles (light grease stains acceptable)",
|
| 82 |
+
"Food/Kitchen Waste": "Organic waste from food preparation and consumption, including containers with obvious food content",
|
| 83 |
+
"Hazardous Waste": "Items containing harmful substances that require special disposal",
|
| 84 |
+
"Other Waste": "Items that don't fit into other categories and go to general waste",
|
| 85 |
+
"Unable to classify": "Items that are not garbage/waste, such as people, living things, functioning objects, or multiple different garbage types mixed together",
|
| 86 |
+
}
|