Spaces:
Running
on
Zero
Running
on
Zero
Upload 8 files
Browse files- app.py +90 -4
- classifier.py +250 -0
- config.py +25 -0
- knowledge_base.py +55 -0
- requirements.txt +8 -0
- test_images/cardboard1.jpg +0 -0
- test_images/glass2.jpg +0 -0
- test_images/metal5.jpg +0 -0
app.py
CHANGED
|
@@ -1,7 +1,93 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import os
|
| 4 |
+
from classifier import GarbageClassifier
|
| 5 |
+
from config import Config
|
| 6 |
|
| 7 |
+
# Initialize classifier
|
| 8 |
+
config = Config()
|
| 9 |
+
classifier = GarbageClassifier(config)
|
| 10 |
|
| 11 |
+
# Load model at startup
|
| 12 |
+
print("Loading model...")
|
| 13 |
+
classifier.load_model()
|
| 14 |
+
print("Model loaded successfully!")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def classify_garbage(image):
|
| 18 |
+
"""
|
| 19 |
+
Classify garbage in uploaded image
|
| 20 |
+
"""
|
| 21 |
+
if image is None:
|
| 22 |
+
return "Please upload an image", "No image provided"
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
classification, full_response = classifier.classify_image(image)
|
| 26 |
+
return classification, full_response
|
| 27 |
+
except Exception as e:
|
| 28 |
+
return "Error", f"Classification failed: {str(e)}"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_example_images():
|
| 32 |
+
"""Get example images if they exist"""
|
| 33 |
+
example_dir = "test_images"
|
| 34 |
+
examples = []
|
| 35 |
+
if os.path.exists(example_dir):
|
| 36 |
+
for file in os.listdir(example_dir):
|
| 37 |
+
if file.lower().endswith((".png", ".jpg", ".jpeg")):
|
| 38 |
+
examples.append(os.path.join(example_dir, file))
|
| 39 |
+
return examples[:3] # Limit to 3 examples
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Create Gradio interface
|
| 43 |
+
with gr.Blocks(title="Garbage Classification System") as demo:
|
| 44 |
+
gr.Markdown("# 🗂️ Garbage Classification System")
|
| 45 |
+
gr.Markdown(
|
| 46 |
+
"Upload an image to classify garbage into: Recyclable Waste, Food/Kitchen Waste, Hazardous Waste, or Other Waste"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
with gr.Row():
|
| 50 |
+
with gr.Column():
|
| 51 |
+
image_input = gr.Image(type="pil", label="Upload Garbage Image")
|
| 52 |
+
|
| 53 |
+
classify_btn = gr.Button("Classify Garbage", variant="primary", size="lg")
|
| 54 |
+
|
| 55 |
+
with gr.Column():
|
| 56 |
+
classification_output = gr.Textbox(
|
| 57 |
+
label="Classification Result",
|
| 58 |
+
placeholder="Upload an image and click classify",
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
full_response_output = gr.Textbox(
|
| 62 |
+
label="Detailed Analysis",
|
| 63 |
+
placeholder="Detailed reasoning will appear here",
|
| 64 |
+
lines=10,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Category information
|
| 68 |
+
with gr.Accordion("📋 Garbage Categories Information", open=False):
|
| 69 |
+
category_info = classifier.get_categories_info()
|
| 70 |
+
for category, description in category_info.items():
|
| 71 |
+
gr.Markdown(f"**{category}**: {description}")
|
| 72 |
+
|
| 73 |
+
# Examples
|
| 74 |
+
examples = get_example_images()
|
| 75 |
+
if examples:
|
| 76 |
+
gr.Examples(examples=examples, inputs=image_input, label="Example Images")
|
| 77 |
+
|
| 78 |
+
# Event handlers
|
| 79 |
+
classify_btn.click(
|
| 80 |
+
fn=classify_garbage,
|
| 81 |
+
inputs=image_input,
|
| 82 |
+
outputs=[classification_output, full_response_output],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Auto-classify on image upload
|
| 86 |
+
image_input.change(
|
| 87 |
+
fn=classify_garbage,
|
| 88 |
+
inputs=image_input,
|
| 89 |
+
outputs=[classification_output, full_response_output],
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
demo.launch()
|
classifier.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import logging
|
| 5 |
+
from typing import Union, Tuple
|
| 6 |
+
from config import Config
|
| 7 |
+
from knowledge_base import GarbageClassificationKnowledge
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class GarbageClassifier:
|
| 11 |
+
def __init__(self, config: Config = None):
|
| 12 |
+
self.config = config or Config()
|
| 13 |
+
self.knowledge = GarbageClassificationKnowledge()
|
| 14 |
+
self.processor = None
|
| 15 |
+
self.model = None
|
| 16 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
# Setup logging
|
| 19 |
+
logging.basicConfig(level=logging.INFO)
|
| 20 |
+
self.logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
def load_model(self):
|
| 23 |
+
"""Load the model and processor"""
|
| 24 |
+
try:
|
| 25 |
+
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
|
| 26 |
+
|
| 27 |
+
# Load processor
|
| 28 |
+
kwargs = {}
|
| 29 |
+
if self.config.HF_TOKEN:
|
| 30 |
+
kwargs["token"] = self.config.HF_TOKEN
|
| 31 |
+
|
| 32 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 33 |
+
self.config.MODEL_NAME, **kwargs
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Load model
|
| 37 |
+
self.model = AutoModelForImageTextToText.from_pretrained(
|
| 38 |
+
self.config.MODEL_NAME,
|
| 39 |
+
torch_dtype=self.config.TORCH_DTYPE,
|
| 40 |
+
device_map=self.config.DEVICE_MAP,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
self.logger.info("Model loaded successfully")
|
| 44 |
+
|
| 45 |
+
except Exception as e:
|
| 46 |
+
self.logger.error(f"Error loading model: {str(e)}")
|
| 47 |
+
raise
|
| 48 |
+
|
| 49 |
+
def preprocess_image(self, image: Image.Image) -> Image.Image:
|
| 50 |
+
"""
|
| 51 |
+
Preprocess image to meet Gemma3n requirements (512x512)
|
| 52 |
+
"""
|
| 53 |
+
# Convert to RGB if necessary
|
| 54 |
+
if image.mode != "RGB":
|
| 55 |
+
image = image.convert("RGB")
|
| 56 |
+
|
| 57 |
+
# Resize to 512x512 as required by Gemma3n
|
| 58 |
+
target_size = (512, 512)
|
| 59 |
+
|
| 60 |
+
# Calculate aspect ratio preserving resize
|
| 61 |
+
original_width, original_height = image.size
|
| 62 |
+
aspect_ratio = original_width / original_height
|
| 63 |
+
|
| 64 |
+
if aspect_ratio > 1:
|
| 65 |
+
# Width is larger
|
| 66 |
+
new_width = target_size[0]
|
| 67 |
+
new_height = int(target_size[0] / aspect_ratio)
|
| 68 |
+
else:
|
| 69 |
+
# Height is larger or equal
|
| 70 |
+
new_height = target_size[1]
|
| 71 |
+
new_width = int(target_size[1] * aspect_ratio)
|
| 72 |
+
|
| 73 |
+
# Resize image maintaining aspect ratio
|
| 74 |
+
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 75 |
+
|
| 76 |
+
# Create a new image with target size and paste the resized image
|
| 77 |
+
processed_image = Image.new(
|
| 78 |
+
"RGB", target_size, (255, 255, 255)
|
| 79 |
+
) # White background
|
| 80 |
+
|
| 81 |
+
# Calculate position to center the image
|
| 82 |
+
x_offset = (target_size[0] - new_width) // 2
|
| 83 |
+
y_offset = (target_size[1] - new_height) // 2
|
| 84 |
+
|
| 85 |
+
processed_image.paste(image, (x_offset, y_offset))
|
| 86 |
+
|
| 87 |
+
return processed_image
|
| 88 |
+
|
| 89 |
+
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str]:
|
| 90 |
+
"""
|
| 91 |
+
Classify garbage in the image
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
image: PIL Image or path to image file
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
Tuple of (classification_result, full_response)
|
| 98 |
+
"""
|
| 99 |
+
if self.model is None or self.processor is None:
|
| 100 |
+
raise RuntimeError("Model not loaded. Call load_model() first.")
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
# Load and process image
|
| 104 |
+
if isinstance(image, str):
|
| 105 |
+
image = Image.open(image)
|
| 106 |
+
elif not isinstance(image, Image.Image):
|
| 107 |
+
raise ValueError("Image must be a PIL Image or file path")
|
| 108 |
+
|
| 109 |
+
# Preprocess image to meet Gemma3n requirements
|
| 110 |
+
processed_image = self.preprocess_image(image)
|
| 111 |
+
|
| 112 |
+
# Prepare messages with system prompt and user query
|
| 113 |
+
messages = [
|
| 114 |
+
{
|
| 115 |
+
"role": "system",
|
| 116 |
+
"content": [
|
| 117 |
+
{
|
| 118 |
+
"type": "text",
|
| 119 |
+
"text": self.knowledge.get_system_prompt(),
|
| 120 |
+
}
|
| 121 |
+
],
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"role": "user",
|
| 125 |
+
"content": [
|
| 126 |
+
{"type": "image", "image": processed_image},
|
| 127 |
+
{
|
| 128 |
+
"type": "text",
|
| 129 |
+
"text": "Please classify the garbage in this image and explain your reasoning.",
|
| 130 |
+
},
|
| 131 |
+
],
|
| 132 |
+
},
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
# Apply chat template and tokenize
|
| 136 |
+
inputs = self.processor.apply_chat_template(
|
| 137 |
+
messages,
|
| 138 |
+
add_generation_prompt=True,
|
| 139 |
+
tokenize=True,
|
| 140 |
+
return_dict=True,
|
| 141 |
+
return_tensors="pt",
|
| 142 |
+
).to(self.model.device, dtype=self.model.dtype)
|
| 143 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 144 |
+
|
| 145 |
+
outputs = self.model.generate(
|
| 146 |
+
**inputs,
|
| 147 |
+
max_new_tokens=self.config.MAX_NEW_TOKENS,
|
| 148 |
+
disable_compile=True,
|
| 149 |
+
)
|
| 150 |
+
response = self.processor.batch_decode(
|
| 151 |
+
outputs[:, input_len:],
|
| 152 |
+
skip_special_tokens=True,
|
| 153 |
+
)[0]
|
| 154 |
+
|
| 155 |
+
# Extract classification from response
|
| 156 |
+
classification = self._extract_classification(response)
|
| 157 |
+
|
| 158 |
+
# Create formatted response
|
| 159 |
+
formatted_response = self._format_response(classification, response)
|
| 160 |
+
|
| 161 |
+
return classification, formatted_response
|
| 162 |
+
|
| 163 |
+
except Exception as e:
|
| 164 |
+
self.logger.error(f"Error during classification: {str(e)}")
|
| 165 |
+
import traceback
|
| 166 |
+
|
| 167 |
+
traceback.print_exc()
|
| 168 |
+
return "Error", f"Classification failed: {str(e)}"
|
| 169 |
+
|
| 170 |
+
def _extract_classification(self, response: str) -> str:
|
| 171 |
+
"""Extract the main classification from the response"""
|
| 172 |
+
categories = self.knowledge.get_categories()
|
| 173 |
+
|
| 174 |
+
# Convert response to lowercase for matching
|
| 175 |
+
response_lower = response.lower()
|
| 176 |
+
|
| 177 |
+
# Look for exact category matches first
|
| 178 |
+
for category in categories:
|
| 179 |
+
if category.lower() in response_lower:
|
| 180 |
+
return category
|
| 181 |
+
|
| 182 |
+
# Look for key terms if no exact match
|
| 183 |
+
category_keywords = {
|
| 184 |
+
"Recyclable Waste": [
|
| 185 |
+
"recyclable",
|
| 186 |
+
"recycle",
|
| 187 |
+
"plastic",
|
| 188 |
+
"paper",
|
| 189 |
+
"metal",
|
| 190 |
+
"glass",
|
| 191 |
+
"bottle",
|
| 192 |
+
"can",
|
| 193 |
+
"aluminum",
|
| 194 |
+
"cardboard",
|
| 195 |
+
],
|
| 196 |
+
"Food/Kitchen Waste": [
|
| 197 |
+
"food",
|
| 198 |
+
"kitchen",
|
| 199 |
+
"organic",
|
| 200 |
+
"fruit",
|
| 201 |
+
"vegetable",
|
| 202 |
+
"leftovers",
|
| 203 |
+
"scraps",
|
| 204 |
+
"peel",
|
| 205 |
+
"core",
|
| 206 |
+
"bone",
|
| 207 |
+
],
|
| 208 |
+
"Hazardous Waste": [
|
| 209 |
+
"hazardous",
|
| 210 |
+
"dangerous",
|
| 211 |
+
"toxic",
|
| 212 |
+
"battery",
|
| 213 |
+
"chemical",
|
| 214 |
+
"medicine",
|
| 215 |
+
"paint",
|
| 216 |
+
"pharmaceutical",
|
| 217 |
+
],
|
| 218 |
+
"Other Waste": [
|
| 219 |
+
"other",
|
| 220 |
+
"general",
|
| 221 |
+
"trash",
|
| 222 |
+
"garbage",
|
| 223 |
+
"waste",
|
| 224 |
+
"cigarette",
|
| 225 |
+
"ceramic",
|
| 226 |
+
"dust",
|
| 227 |
+
],
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
for category, keywords in category_keywords.items():
|
| 231 |
+
if any(keyword in response_lower for keyword in keywords):
|
| 232 |
+
return category
|
| 233 |
+
|
| 234 |
+
return "Unable to classify"
|
| 235 |
+
|
| 236 |
+
def _format_response(self, classification: str, full_response: str) -> str:
|
| 237 |
+
"""Format the response with classification and reasoning"""
|
| 238 |
+
if not full_response.strip():
|
| 239 |
+
return f"**Classification**: {classification}\n**Reasoning**: No detailed analysis available."
|
| 240 |
+
|
| 241 |
+
# If response already contains structured format, return as is
|
| 242 |
+
if "**Classification**" in full_response and "**Reasoning**" in full_response:
|
| 243 |
+
return full_response
|
| 244 |
+
|
| 245 |
+
# Otherwise, format it
|
| 246 |
+
return f"**Classification**: {classification}\n\n**Reasoning**: {full_response}"
|
| 247 |
+
|
| 248 |
+
def get_categories_info(self):
|
| 249 |
+
"""Get information about all categories"""
|
| 250 |
+
return self.knowledge.get_category_descriptions()
|
config.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@dataclass
|
| 7 |
+
class Config:
|
| 8 |
+
# Gemma3n model configuration
|
| 9 |
+
MODEL_NAME: str = "google/gemma-3n-E2B-it"
|
| 10 |
+
|
| 11 |
+
# Generation parameters
|
| 12 |
+
MAX_NEW_TOKENS: int = 512
|
| 13 |
+
|
| 14 |
+
# Device configuration
|
| 15 |
+
TORCH_DTYPE: str = torch.bfloat16
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
DEVICE_MAP: str = "cuda:0" # Use first GPU if available
|
| 18 |
+
else:
|
| 19 |
+
DEVICE_MAP: str = "cpu"
|
| 20 |
+
|
| 21 |
+
# Image preprocessing
|
| 22 |
+
IMAGE_SIZE: int = 512
|
| 23 |
+
|
| 24 |
+
# Hugging Face token
|
| 25 |
+
HF_TOKEN: str = os.getenv("HF_TOKEN", "")
|
knowledge_base.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class GarbageClassificationKnowledge:
|
| 2 |
+
@staticmethod
|
| 3 |
+
def get_system_prompt():
|
| 4 |
+
return """You are a professional garbage classification expert. You need to carefully observe the items in the picture, analyze their materials, properties and uses, and then make accurate judgments according to garbage classification standards.
|
| 5 |
+
|
| 6 |
+
Garbage classification standards:
|
| 7 |
+
|
| 8 |
+
**Recyclable Waste**:
|
| 9 |
+
- Paper: newspapers, magazines, books, various packaging papers, office paper, advertising flyers, cardboard boxes, copy paper, etc.
|
| 10 |
+
- Plastics: various plastic bags, plastic packaging, disposable plastic food containers and utensils, toothbrushes, cups, water bottles, plastic toys, etc.
|
| 11 |
+
- Metals: aluminum cans, tin cans, toothpaste tubes, metal toys, metal stationery, nails, metal sheets, aluminum foil, etc.
|
| 12 |
+
- Glass: glass bottles, broken glass pieces, mirrors, light bulbs, vacuum flasks, etc.
|
| 13 |
+
- Textiles: old clothing, textile products, shoes, curtains, towels, bags, etc.
|
| 14 |
+
|
| 15 |
+
**Food/Kitchen Waste**:
|
| 16 |
+
- Food scraps: rice, noodles, bread, meat, fish, shrimp shells, crab shells, bones, etc.
|
| 17 |
+
- Fruit peels and cores: watermelon rinds, apple cores, orange peels, banana peels, nut shells, etc.
|
| 18 |
+
- Plants: withered branches and leaves, flowers, traditional Chinese medicine residue, etc.
|
| 19 |
+
- Expired food: expired canned food, cookies, candy, etc.
|
| 20 |
+
|
| 21 |
+
**Hazardous Waste**:
|
| 22 |
+
- Batteries: dry batteries, rechargeable batteries, button batteries, and all types of batteries
|
| 23 |
+
- Light tubes: energy-saving lamps, fluorescent tubes, incandescent bulbs, LED lights, etc.
|
| 24 |
+
- Pharmaceuticals: expired medicines, medicine packaging, thermometers, blood pressure monitors, etc.
|
| 25 |
+
- Paints: paint, coatings, glue, nail polish, cosmetics, etc.
|
| 26 |
+
- Others: pesticides, cleaning agents, agricultural chemicals, X-ray films, etc.
|
| 27 |
+
|
| 28 |
+
**Other Waste**:
|
| 29 |
+
- Contaminated non-recyclable paper: toilet paper, diapers, wet wipes, napkins, etc.
|
| 30 |
+
- Cigarette butts, ceramics, dust, disposable tableware (non-plastic)
|
| 31 |
+
- Large bones, hard shells, hard fruit pits (coconut shells, durian shells, walnut shells, corn cobs, etc.)
|
| 32 |
+
- Hair, pet waste, cat litter, etc.
|
| 33 |
+
|
| 34 |
+
Please observe the items in the image carefully according to the above classification standards, provide accurate garbage classification results, and briefly explain the classification reasoning. Format your response as:
|
| 35 |
+
|
| 36 |
+
**Classification**: [Category Name]
|
| 37 |
+
**Reasoning**: [Brief explanation of why this item belongs to this category]"""
|
| 38 |
+
|
| 39 |
+
@staticmethod
|
| 40 |
+
def get_categories():
|
| 41 |
+
return [
|
| 42 |
+
"Recyclable Waste",
|
| 43 |
+
"Food/Kitchen Waste",
|
| 44 |
+
"Hazardous Waste",
|
| 45 |
+
"Other Waste",
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
@staticmethod
|
| 49 |
+
def get_category_descriptions():
|
| 50 |
+
return {
|
| 51 |
+
"Recyclable Waste": "Items that can be processed and reused, including paper, plastic, metal, glass, and textiles",
|
| 52 |
+
"Food/Kitchen Waste": "Organic waste from food preparation and consumption",
|
| 53 |
+
"Hazardous Waste": "Items containing harmful substances that require special disposal",
|
| 54 |
+
"Other Waste": "Items that don't fit into other categories and go to general waste",
|
| 55 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pillow
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
transformers >= 4.53
|
| 6 |
+
accelerate
|
| 7 |
+
timm
|
| 8 |
+
gradio
|
test_images/cardboard1.jpg
ADDED
|
test_images/glass2.jpg
ADDED
|
test_images/metal5.jpg
ADDED
|