Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,6 +23,11 @@ mpl.rcParams.update(mpl.rcParamsDefault)
|
|
| 23 |
df = pd.read_parquet('virus_ds.parquet')
|
| 24 |
virus = df['Organism_Name'].unique()
|
| 25 |
virus = {v: v for v in virus}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
loss_typesss = pd.read_csv("training_data_5.csv")['loss_type'].unique().tolist()
|
| 27 |
model_typesss = pd.read_csv("training_data_5.csv")['model_type'].unique().tolist()
|
| 28 |
param_typesss = pd.read_csv("training_data_5.csv")['param_type'].unique().tolist()
|
|
@@ -76,17 +81,20 @@ with ui.navset_card_tab(id="tab"):
|
|
| 76 |
ui.panel_title("How does sequence distribution vary across sequence length?")
|
| 77 |
with ui.layout_columns():
|
| 78 |
with ui.card():
|
| 79 |
-
ui.input_selectize("virus_selector_1", "Select your viruses:",
|
| 80 |
with ui.card():
|
| 81 |
ui.input_slider(
|
| 82 |
-
"basepair","Select basepair",0,
|
| 83 |
)
|
| 84 |
|
| 85 |
@render.plot()
|
| 86 |
def plot_distro():
|
| 87 |
-
df = pd.read_parquet("
|
| 88 |
-
df = df
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
return plot_distrobutions(grouped, grouped.index, input.basepair())
|
| 91 |
|
| 92 |
with ui.nav_panel("Viral Microstructure"):
|
|
|
|
| 23 |
df = pd.read_parquet('virus_ds.parquet')
|
| 24 |
virus = df['Organism_Name'].unique()
|
| 25 |
virus = {v: v for v in virus}
|
| 26 |
+
df_new = pd.read_parquet("virus.parquet")
|
| 27 |
+
df_new = df_new.groupby('organism_name').apply(lambda x: x.head(100) if len(x) > 10 else None).reset_index(drop=True)
|
| 28 |
+
filter_species = df_new.organism_name.value_counts().reset_index()[df_new.organism_name.value_counts().reset_index()['count'] > 40 ]['organism_name'][1:].tolist()
|
| 29 |
+
del df_new
|
| 30 |
+
virus_new = {v: v for v in filter_species}
|
| 31 |
loss_typesss = pd.read_csv("training_data_5.csv")['loss_type'].unique().tolist()
|
| 32 |
model_typesss = pd.read_csv("training_data_5.csv")['model_type'].unique().tolist()
|
| 33 |
param_typesss = pd.read_csv("training_data_5.csv")['param_type'].unique().tolist()
|
|
|
|
| 81 |
ui.panel_title("How does sequence distribution vary across sequence length?")
|
| 82 |
with ui.layout_columns():
|
| 83 |
with ui.card():
|
| 84 |
+
ui.input_selectize("virus_selector_1", "Select your viruses:", virus_new, multiple=True, selected=None)
|
| 85 |
with ui.card():
|
| 86 |
ui.input_slider(
|
| 87 |
+
"basepair","Select basepair",0, 10000, 15
|
| 88 |
)
|
| 89 |
|
| 90 |
@render.plot()
|
| 91 |
def plot_distro():
|
| 92 |
+
df = pd.read_parquet("virus.parquet")
|
| 93 |
+
df = df.groupby('organism_name').apply(lambda x: x.head(100) if len(x) > 10 else None).reset_index(drop=True)
|
| 94 |
+
filter_species = df.organism_name.value_counts().reset_index()[df.organism_name.value_counts().reset_index()['count'] > 40 ]['organism_name'][1:].tolist()
|
| 95 |
+
|
| 96 |
+
df = df[df["organism_name"].isin(input.virus_selector_1())]
|
| 97 |
+
grouped = df.groupby("organism_name")["sequence"].apply(list)
|
| 98 |
return plot_distrobutions(grouped, grouped.index, input.basepair())
|
| 99 |
|
| 100 |
with ui.nav_panel("Viral Microstructure"):
|