Spaces:
Running
on
Zero
Running
on
Zero
| import random | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from collections import deque | |
| class ImagePool(): | |
| def __init__(self, pool_size): | |
| self.pool_size = pool_size | |
| self.sample_size = pool_size | |
| if self.pool_size > 0: | |
| self.num_imgs = 0 | |
| self.images = deque() | |
| def add(self, images): | |
| if self.pool_size == 0: | |
| return images | |
| for image in images.data: | |
| image = torch.unsqueeze(image, 0) | |
| if self.num_imgs < self.pool_size: | |
| self.num_imgs = self.num_imgs + 1 | |
| self.images.append(image) | |
| else: | |
| self.images.popleft() | |
| self.images.append(image) | |
| def query(self): | |
| if len(self.images) > self.sample_size: | |
| return_images = list(random.sample(self.images, self.sample_size)) | |
| else: | |
| return_images = list(self.images) | |
| return torch.cat(return_images, 0) | |