## Restormer: Efficient Transformer for High-Resolution Image Restoration ## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang ## https://arxiv.org/abs/2111.09881 import numpy as np import os import cv2 import math from skimage import metrics from sklearn.metrics import mean_absolute_error def MAE(img1, img2): mae_0=mean_absolute_error(img1[:,:,0], img2[:,:,0], multioutput='uniform_average') mae_1=mean_absolute_error(img1[:,:,1], img2[:,:,1], multioutput='uniform_average') mae_2=mean_absolute_error(img1[:,:,2], img2[:,:,2], multioutput='uniform_average') return np.mean([mae_0,mae_1,mae_2]) def PSNR(img1, img2): mse_ = np.mean( (img1 - img2) ** 2 ) if mse_ == 0: return 100 return 10 * math.log10(1 / mse_) def SSIM(img1, img2): return metrics.structural_similarity(img1, img2, data_range=1, channel_axis=-1) def load_img(filepath): return cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB) def load_img16(filepath): return cv2.cvtColor(cv2.imread(filepath, -1), cv2.COLOR_BGR2RGB) def save_img(filepath, img): cv2.imwrite(filepath,cv2.cvtColor(img, cv2.COLOR_RGB2BGR))