Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Initialize sentiment analysis pipeline
|
| 5 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 6 |
+
|
| 7 |
+
# Use a sarcasm detection model
|
| 8 |
+
sarcasm_model_name = "mrm8488/t5-base-finetuned-sarcasm-twitter" # Correct model name for sarcasm detection
|
| 9 |
+
|
| 10 |
+
# Create the sarcasm detection pipeline
|
| 11 |
+
sarcasm_pipeline = pipeline("text2text-generation", model=sarcasm_model_name)
|
| 12 |
+
|
| 13 |
+
def classify_sentence(sentence):
|
| 14 |
+
# Detect sarcasm
|
| 15 |
+
sarcasm_result = sarcasm_pipeline(sentence)[0]['generated_text']
|
| 16 |
+
is_sarcastic = sarcasm_result.strip().lower() == 'true'
|
| 17 |
+
|
| 18 |
+
# Detect sentiment
|
| 19 |
+
sentiment_result = sentiment_pipeline(sentence)[0]
|
| 20 |
+
sentiment_label = sentiment_result['label']
|
| 21 |
+
sentiment_score = sentiment_result['score']
|
| 22 |
+
|
| 23 |
+
# Determine sentiment
|
| 24 |
+
if sentiment_label == "NEGATIVE":
|
| 25 |
+
sentiment = "negative"
|
| 26 |
+
elif sentiment_label == "POSITIVE":
|
| 27 |
+
sentiment = "positive"
|
| 28 |
+
else:
|
| 29 |
+
sentiment = "neutral"
|
| 30 |
+
|
| 31 |
+
# Handle sarcasm
|
| 32 |
+
if is_sarcastic:
|
| 33 |
+
sentiment += " (sarcastic)"
|
| 34 |
+
|
| 35 |
+
return sentiment
|
| 36 |
+
|
| 37 |
+
# Streamlit app
|
| 38 |
+
st.title("Sentence Analyzer")
|
| 39 |
+
|
| 40 |
+
# User input
|
| 41 |
+
sentence = st.text_input("Enter a sentence:", "")
|
| 42 |
+
|
| 43 |
+
if st.button("Analyze"):
|
| 44 |
+
if sentence:
|
| 45 |
+
classification = classify_sentence(sentence)
|
| 46 |
+
st.write(f"Sentence: {sentence}")
|
| 47 |
+
st.write(f"Classification: {classification}")
|
| 48 |
+
else:
|
| 49 |
+
st.write("Please enter a sentence to analyze.")
|
| 50 |
+
|
| 51 |
+
# Example sentences
|
| 52 |
+
st.subheader("Example Sentences")
|
| 53 |
+
example_sentences = [
|
| 54 |
+
"they are so beautiful",
|
| 55 |
+
"This is the best day of my life.",
|
| 56 |
+
"I'm not happy with your work.",
|
| 57 |
+
"Yeah,you are not a good person!"
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
if st.button("Analyze Example Sentences"):
|
| 61 |
+
for sentence in example_sentences:
|
| 62 |
+
st.write(f"Sentence: {sentence}")
|
| 63 |
+
st.write(f"Classification: {classify_sentence(sentence)}")
|
| 64 |
+
st.write()
|