Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
| from diffusers import DiffusionPipeline | |
| # model_id = "echarlaix/sdxl-turbo-openvino-int8" | |
| # model_id = "echarlaix/LCM_Dreamshaper_v7-openvino" | |
| #safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
| model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov" | |
| #pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker) | |
| pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False) | |
| pipeline.load_lora_weights("EvilEngine/easynegative") | |
| batch_size, num_images, height, width = 1, 1, 512, 512 | |
| pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) | |
| pipeline.compile() | |
| negative_prompt="easynegative" | |
| def infer(prompt, num_inference_steps): | |
| image = pipeline( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, #no negative_prompt keyword in LatentConsistencyPipelineMixin | |
| # guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| width = width, | |
| height = height, | |
| num_images_per_prompt=num_images, | |
| ).images[0] | |
| return image | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡ | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| #with gr.Row(): | |
| # negative_prompt = gr.Text( | |
| # label="Negative prompt", | |
| # max_lines=1, | |
| # placeholder="Enter a negative prompt", | |
| # visible=True, | |
| # ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=10, | |
| step=1, | |
| value=5, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| inputs = [prompt] | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [prompt, num_inference_steps], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch() |